<u>Subjecting Formula Past Paper Answers Edexcel Maths IGCSE Higher-Calculator</u>

1.

3y + 6x - 3 = x + 5y 5x - 3 = 2y oe			M1 Multiplying out brackets. M1 dep Correctly collecting like terms, (3 terms needed here).
	(5x-3)/2	3	Al oe
			Total 3 marks

2.

$\frac{A}{R} = r + h \text{ or } A = 2\pi r^2 + 2\pi rh$			M1 Correct first step
2004	$\frac{A}{2\pi r} - r = h \text{ oe}$	2	A1 e.g. $\frac{4-2\pi r^2}{2\pi r}$ Give full credit to equivalent correct expressions
			Total 2 marks

3.

Question	Working	Answer	Mark	Notes
16	$A = (4 - \pi)r^2$ or $\frac{A}{r^2} = 4 - \pi$		3	M1
	$r^2 = \frac{A}{4 - \pi}$			M1 for isolating r^2
		$\sqrt{\frac{A}{4-\pi}}$		Also accept $\pm \sqrt{\frac{A}{4-\pi}}$
				Total 3 marks

4.

Question	Working	Answer	Mark	Notes
10	$y^2 = ay^2 + n$		5	M1
	$y^{2} - ay^{2} = n$ or $1 = a + \frac{n}{v^{2}}$ or $1 - a = \frac{n}{v^{2}}$			M1 isolate terms in y^2 or divide through by y^2
	$y^2 \qquad y^2 $			M1 take out y^2 as a common factor
	$y^2 = \frac{n}{1-a}$			M1 y ² as subject
		$\sqrt{\frac{n}{1-a}}$		A1 accept $\sqrt{\frac{-n}{a-1}}$
				Total 5 marks

5.

5t - 5g = 2t + 7			M1	for expanding bracket within the equation or
5t - 2t = 7 + 5g			M1	division of all terms by 5 (ft a 4 term equation) to isolate terms in t
	$t = \frac{5g + 7}{3}$	3	A1	oe
				Total 3 marks

6.

t(3p+1) = 7 - 2p		4	M1 multiplies by $3p + 1$ must have brackets
3pt + 2p = 7 - t			M1 isolates terms in p
p(3t+2) = 7 - t			M1 takes p out as a common factor
	$p = \frac{7-t}{}$		A1 or $p = \frac{t-7}{-3t-2}$ oe with p as the subject
	3t+2		-3t-2
			Total 7 marks

7.

$k^2 = \frac{5m + 2e}{3e}$ or $k\sqrt{3e} = \sqrt{5m + 2e}$		4	M1	Squaring both sides or clearing fraction
$3ek^2 = 5m + 2e$			M1	Clearing fraction and squaring both sides
$3ek^2 - 2e = 5m \text{ or } -5m = 2e - 3ek^2$ $e(3k^2 - 2) = 5m \text{ or } -5m = e(2 - 3k^2)$			M1	Isolating terms in e in a correct equation
	$e = \frac{5m}{3k^2 - 2}$		A1	for $e = \frac{5m}{3k^2 - 2}$ or $e = \frac{-5m}{2 - 3k^2}$ oe
				Total 4 marks

8.

$x^2 = \frac{2b - a}{7 - am}$		4	M1	for squaring both sides
$x^2 \left(7 - am\right) = 2b - a$			M1	for multiplying by $7 - am$ in a correct equation allow $x^2 \times 7 - am = 2b - a$ $7 - am \times x^2 = 2b - a$
$7x^2 - 2b = amx^2 - a$ or $a - amx^2 = 2b - 7x^2$			M1	for isolating terms in a in a correct equation
	$a = \frac{7x^2 - 2b}{mx^2 - 1}$ oe		A1	or for $a = \frac{2b - 7x^2}{1 - mx^2}$ oe with a as the subject