Straight Line Graph GCSE Maths EDEXCEL Past Papers Answers

None Calculator

1.

(a)	Table of values	Line from	3	(Table of values)
	x = -1 0 1 2 3	(1, 2) to (3,14)		M1 for at least 2 correct attempts to find points by substituting values of x.
	y = 2 2 6 10 14 OR			M1 ft for plotting at least 2 of their points (any points plotted
	Using $y = mx + c$, gradient = 4,			from their table must be correct)
	v intercept = 2			A1 for correct line between 1 and 3
	y intercept – 2			AT for correct file between 1 and 3
				(No table of values)
				M2 for at least 2 correct points (and no incorrect points) plotted
				OR line segment of $y = 4x + 2$ drawn (ignore any additional
				incorrect segments)
				(M1 for at least 3 correct points with no more than 2 incorrect
				points)
				A1 for correct line between -1 and 3
				(Use of $y = mx + c$)
				M2 for at least 2 correct points (and no incorrect points) plotted
				OR line segment of $y = 4x + 2$ drawn (ignore any additional
				incorrect segments)
				(M1 for line drawn with gradient 4 OR line drawn with a
				y intercept of 2)
				A1 for correct line between 1 and 3
(b)(i)		$y=4x+c, c\neq 2$	1	B1 Correct equation given.
(ii)		- 0.25	1	B1 Correct gradient given.
(11)		- 0.25	1	1
				Note – 0.25 could be written as - 4 oe

2.

3+7, 8+5 2, 2	$(5, 6\frac{1}{2})$		M1 for either x or y coordinate correct or $\frac{3+7}{2}$, $\frac{8+5}{2}$, both seen but not correctly evaluated A1 for $(5, 6\frac{1}{2})$ oe
	Q .	_	8

(a)		(0, 2, 4)	1	B1 cao
(b)	$\left(\frac{0+6}{2}, \frac{2+2}{2}, \frac{4+4}{2}\right)$	(3, 2, 4)	2	M1 for an answer of $(a, 2, 4)$ or $(3, b, 4)$ or $(3, 2, c)$ or for $[("0" + 6) \div 2, ("2" + 2) \div 2, ("4" + 4) \div 2]$ This may be implied by their answer with no working seen A1 for $(3, 2, 4)$ cao

uestion	Working	Answer	Mark	Notes
(a)		equation	1	B1 for $y = 3x + k$, $k \neq -5$ or any other equivalent form
(b)		$y = -\frac{1}{3}x + 7$	3	B1 for $-\frac{1}{3}$ or $3m = -1$ oe
				M1 for $y = -\frac{1}{3}x + c$ or $5 = -\frac{1}{3} \times 6 + c$ or $\frac{y - 5}{x - 6} = -\frac{1}{3}$
				A1 for $y = -\frac{1}{3}x + 7$ oe
				OR
				B1 for $x + 3y + k = 0$ or $x + 3y = k$ M1 for $6 + 3 \times 5 + k = 0$
				A1 for $x + 3y - 21 = 0$ oe

5.

Line $y = 2x - 1$ drawn 3 (Table of values)	uestion Working	Answer	Mark	Notes
$ \frac{x-2}{y-5} - \frac{1}{3} - \frac{1}{1} + \frac{1}{3} +$		Line $y = 2x - 1$ drawn	3	M1 for at least 2 correct attempts to find points by substituting values of x M1 (dep) ft for plotting at least 2 of their points (any points plotted from their table must be correct) A1 for correct line between $x = -2$ and $x = 3$ (No table of values) M2 for at least 2 correct points (and no incorrect points) plotted OR line segment of $y = 2x - 1$ drawn (ignore any additional incorrect segments) (M1 for at least 3 correct points with no more than 2 incorrect points) A1 for correct line between $x = -2$ and $x = 3$ (Use of $y = mx + c$) M2 line segment of $y = 2x - 1$ drawn (ignore any additional incorrect segments) (M1 for line drawn with gradient of 2 OR line drawn with y intercept of $y = 1$ and a positive gradient)

	$\left(\frac{1+4}{2}, \frac{2+0}{2}\right)$	(2.5, 1)	2	M1 for $\frac{1+4}{2}$ and $\frac{2+0}{2}$ or for either the <i>x</i> coordinate correct or the <i>y</i> coordinate correct A1 for (2.5, 1) oe SC: B1 for an answer of (1, 2.5) if M0 scored
--	---	----------	---	---

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Straight line from (-2, -10) to (3, 10)	3 (Table of values) M1 for at least 2 correct attempts to find substituting values of x M1 (dep) ft for plotting at least 2 of their points plotted from their table must be coplotted) A1 for correct line between x = -2 and x	points (any
Using $y = mx + c$ gradient = 4 y intercept = -2		(No table of values) M2 for at least 2 correct points and no in plotted OR line segment of $y = 4x - 2$ dra any additional incorrect segments) (M1 for at least 3 correct points with no incorrect points) A1 for correct line between $x = -2$ and x	awn (ignore more than 2
		(Use of $y = mx + c$) M2 line segment of $y = 4x - 2$ drawn (ign additional incorrect segments) (M1 for line drawn with gradient of 4 OF with y intercept of -2 and a positive grad A1 for correct line between $x = -2$ and x	R line drawn lient)

8.

(a)	y = 4x + 2	2	B2 for $y = 4x + 2$ oe (B1 for $y = 4x + c$ or $4x + 2$ or $L = 4x + 2$)
(b)	y = 4x - 14	3	B1 for gradient = 4 M1 for $-6 = 44 \times 2 + c$ or $y6 = 44(x - 2)$ A1 for $y = 4x - 14$ oe

estion	Working	Answer	Mark	Notes
	x -2 -1 0 1 2 3	correct line	3	(Table of values)
	y -7 -5 -3 -1 1 3			M1 for at least 2 correct attempts to find points by substituting values of x .
				M1 ft for plotting at least 2 of their points (any points plotted from their table must be correctly plotted)
				A1 for correct line between -2 and 3
				(No table of values)
				M2 for at least 2 correct points (and no incorrect points) plotted OR
				line segment of 2x-3 drawn (ignore any additional incorrect segments)
				(M1 for at least 3 correct points with no more than 2 incorrect points)
				A1 for correct line between -2 and 3
				(Use of $y=mx+c$)
				M2 line segment of 2x-3 drawn (ignore any additional incorrect segments)
				(M1 for line drawn with gradient of 2 OR line drawn with a y intercept of -3 and a positive gradient)
				A1 for correct line between -2 and 3

	(-3,-12,-1)	2	B2 cao B1 for two out of three coordinates correct
			B) for two out of timee coordinates correct

11.

$y = \frac{10}{3}x$	+ 3	B1 for stating B as $(0, 5)$ or $OB = 5$ (could be written on the diagram) B1 for C as $(10, 0)$ or $OC = 10$ (could be written on the diagram) or A is $(-10, 10)$ or ft from their BC M1 gradient of $DA = \frac{10}{3}$ or $y = \frac{10}{3}x + c$ M1 for substitution of $x = -13$, $y = 0$ or $x = -10$, $y = 10$ in their equation A1 $y = \frac{10}{3}x + \frac{130}{3}$ oe
---------------------	-----	--

12.

uestion	Working	Answer	Mark	Notes
	$y = \frac{1}{2}x + 3$ $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Correct line from (-2, 2) to (4, 5)	3	(Table of values / calculation of values) M1 for at least 2 correct attempts to find points by substituting values of x. M1 ft for plotting at least 2 of their points (any points plotted from their table must be correctly plotted) A1 for correct line between x = -2 and x = 4 (No table of values) M1 for at least 2 correct points with no more than 2 incorrect points plotted M1 for at least 2 correct points (and no incorrect points) plotted OR line segment of y = \frac{1}{2}x + 3 \text{ drawn} A1 for correct line between x = -2 and x = 4 (Use of y = mx + c) M1 for line drawn with gradient of \frac{1}{2} OR line drawn with a y intercept of 3 M1 for line drawn with a y intercept of 3 A1 for correct line between x = -2 and x = 4 SC: B2 for correct line from x = 0 to x = 4

13.

(b) $(2\frac{1}{2}, 5, 2\frac{1}{2})$ B1 for $(2\frac{1}{2}, 5, 2\frac{1}{2})$ oe	1	(a)	(0, 5, 5)	1	B1 cao
		(b)	$(2\frac{1}{2}, 5, 2\frac{1}{2})$	1	B1 for $(2\frac{1}{2}, 5, 2\frac{1}{2})$ oe

uestion	Working	Answer	Mark	Notes
		$y = \frac{3}{2}x - \frac{5}{2}$	4	M1 for attempt to find gradient of AB M1 (dep) for attempt to find gradient of perpendicular line eg use of $-\frac{1}{m}$ M1 for substituting $x = 3$, $y = 2$ into $y = "m" x + c$ A1 for complete correct equation $y = \frac{3}{2}x - \frac{5}{2}$ oe

(a)	(5.2.2)	1	B1 cao	Г	Е
	(5, 2, 2)	2			0.40
(b)	(4, 2, 1)	2	M1 for an answer of (a, 2, 1) or (4, b, 1) or		E
			(4, 2, c) or ft from (a)		
			A1 (4, 2, 1) or ft from (a)	-	

16.

		l	*** ****	
$\frac{-2}{6} = \frac{-1}{3}$	y = 3x - 8	4	M1 for gradient $\frac{-2}{6}$	Е
$1 = 3 \times 3 + c$			M1 for use of $\frac{-1}{m}$ for perpendicular line	
			M1 for substitution of (3,1) into their	
			equation	
			A1 for $y = 3x - 8$ oe	

(a)	Table of values $x = -1$ 0 1 2 3 $y = -4$ 1 6 11 16 OR Using $y = mx + c$, gradient = 5, y - intercept = 1	Single line from (-1, -4) to (3, 16)	3	B3 for a correct single line from (-1, -4) to (3, 16) [B2 for at least 3 correct points plotted and joined with line segments OR 3 correct points plotted two of which must be the extremes with no joining OR a single line of gradient 5 passing through (0, 1)] B1 for 2 correctly plotted points OR a single lie of gradient 5 OR a single line passing through (0, 1)		
(b)		D	1	B1 cao		
(c)	Gradient = $-\frac{1}{5}$, $c = 0$	$y = -\frac{1}{5}x$	2	M1 for $y = -\frac{1}{5}x + c$ A1 cao		
Total for Question: 6 marks						