Write your name here Surname	Other nam	es
Pearson Edexcel International GCSE	Centre Number	Candidate Number
Further Pu Level 2 Paper 1	ure Mathe	ematics
Sample assessment material for first Time: 2 hours	teaching September 2017	Paper Reference 4PM1/01
Calculators may be used.		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must **NOT** write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

S 5 1 8 3 6 A 0 1 2 8

Turn over ▶

PEARSON

S51836A
©2016 Pearson Education Ltd.

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere = $\frac{4}{3}\pi r^3$

Series

Arithmetic series

Sum to *n* terms, $S_n = \frac{n}{2} [2a + (n-1)d]$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity,
$$S_{\infty} = \frac{a}{1-r} |r| < 1$$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (diferentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle ABC: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

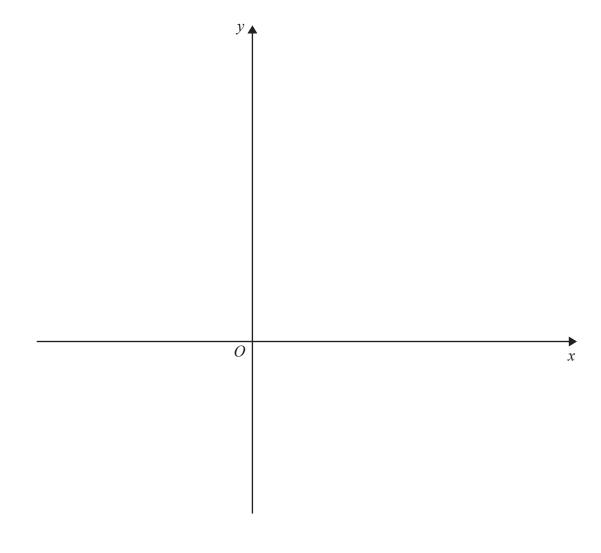
$$cos(A - B) = cos A cos B + sin A sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$


Answer all ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

- 1 (a) On the axes below, sketch the lines with equations 2x + 3y = 8 and 2y = 4x + 1On your sketch, show the coordinates of the points where the lines cross the coordinate axes.
 - (b) Show, by shading on your sketch, the region R defined by the inequalities

$$2x + 3y \leqslant 8 \qquad 2y \leqslant 4x + 1 \qquad y \geqslant 0 \qquad x \leqslant 2 \tag{2}$$

(Total for Question 1 is 4 marks)

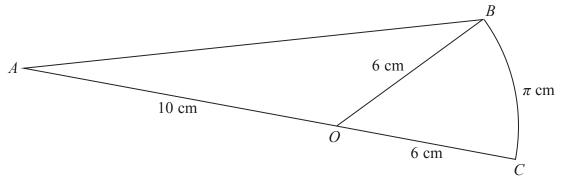


Figure 1

Figure 1 shows a shape ABC in which AOB is a triangle, AOC is a straight line and OBC is a sector of a circle with centre O.

AO = 10 cm, OC = OB = 6 cm and the length of arc $BC = \pi$ cm.

Find, to 3 significant figures,

(a) the length of AB,

(b) the area of the shape ABC.

/	71
	-6 h
	. 7 1

DO NOT WRITE IN THIS AREA

3 Solve, in degrees to 1 decimal place, for $0 \le \theta < 180$			
	$2\cos(2\theta + 30)^{\circ} + \tan(2\theta + 30)^{\circ} = 0$	(6)	
		(0)	

DO NOT WRITE IN THIS AREA

4	A particle <i>P</i> is moving along the <i>x</i> -axis.	
	At time t seconds ($t \ge 0$) the velocity, v m/s, of P is given by $v = 4t^2 - 19t + 12$	
	(a) Find the values of t for which P is instantaneously at rest.	
	(,	(2)
	When $t = 0$, the displacement of P from the origin is -4 m.	
	(b) Find the displacement of P from the origin when $t = 6$	
		(4)
	At time t seconds the acceleration of P is a m/s ² .	
	(c) Find the value of t when $a = 0$	
		(3)

DO NOT WRITE IN THIS AREA

5	Two numbers x and y are such that $2x + y = 13$	
	The sum of the squares of $2x$ and y is S .	
	(a) Show that $S = 8x^2 - 52x + 169$	(2)
		(3)
	Using calculus,	
	(b) find the value of x for which S is a minimum, justifying that this value of x gives a minimum value for S.	
		(4)
	(c) find the minimum value of <i>S</i> .	(2)
		(2)

DO NOT WRITE IN THIS AREA

6	$y = e^x \left(x^2 - 3x \right)$	
Show that $y - 2\frac{dy}{dx} + \frac{d^2y}{dx^2} = 2e^x$		(8)

DO NOT WRITE IN THIS AREA

7 (a) Complete the table of values for

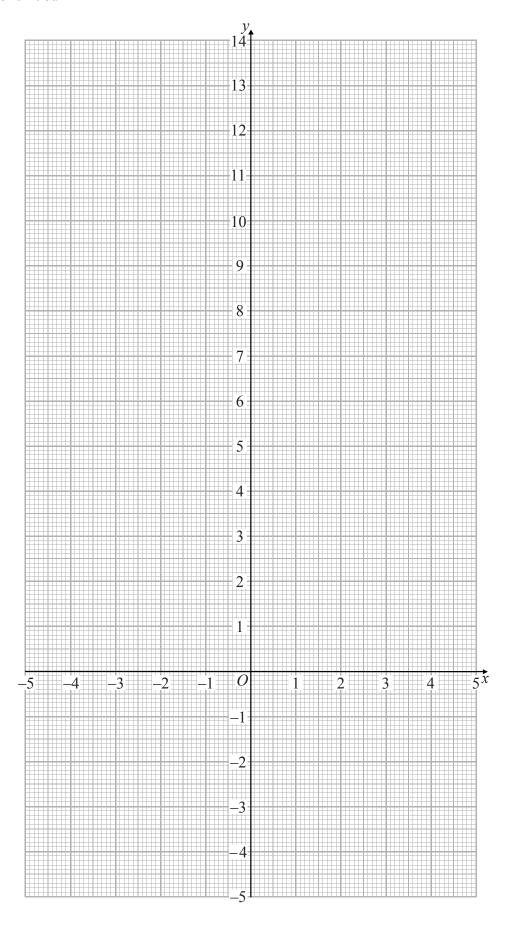
$$y = 2^{\left(\frac{x}{2} + 1\right)} + 1$$

giving your answers to 2 decimal places where appropriate.

(2)

x	0	1	2	3	4	5
у	3				9	12.31

(b) On the grid opposite, draw the graph of $y = 2^{\left(\frac{x}{2}+1\right)} + 1$ for $0 \le x \le 5$


(2)

(c) By drawing a suitable straight line on the grid, obtain an estimate, to 1 decimal place, of the root of the equation $\log_2(4x-6)^2 - x = 2$ in the interval $0 \le x \le 5$

	41
4	41
١.	- /

Question 7 continued

8	The sum S_n of the first n terms of an arithmetic series is given by $S_n = 2n(n+3)$		
	(a) Find the first term of the series.	(1)	
	(b) Find the common difference of the series.	(2)	
	The <i>n</i> th term of the series is T_n		
	Given that $6S_{(n-4)} = 7T_{(n+3)}$		
	(c) find the value of <i>n</i> .	(6)	

DO NOT WRITE IN THIS AREA

The roots of a quadratic equation are α and β where $\alpha + \beta = -\frac{7}{3}$ and $\alpha\beta = -2$ (a) Find a quadratic equation, with integer coefficients, which has roots α and β			
			Given that $\alpha > \beta$ and without solving the equation,
(b) show that $\alpha - \beta = \frac{11}{2}$			
	(2)		
(c) form a quadratic equation, with integer coefficients, which has roots			
$\frac{\alpha+\beta}{\alpha}$ and $\frac{\alpha-\beta}{\beta}$			
	(7)		
	(a) Find a quadratic equation, with integer coefficients, which has roots α and β Given that $\alpha > \beta$ and without solving the equation, (b) show that $\alpha - \beta = \frac{11}{3}$		

DO NOT WRITE IN THIS AREA

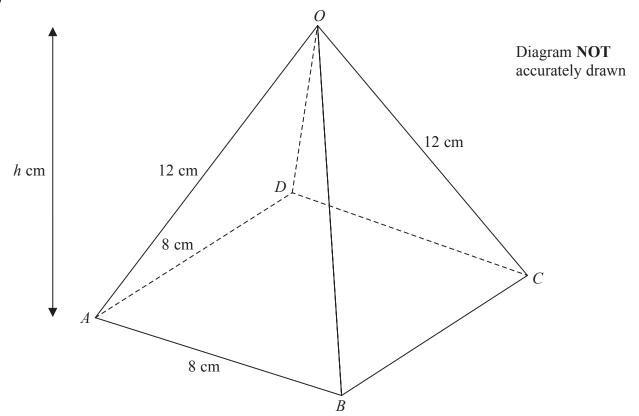


Figure 2 shows a right pyramid ABCDO with a horizontal square base of side 8 cm. The vertical height of the pyramid is h cm and OA = OB = OC = OD = 12 cm.

Figure 2

(a) Find the exact value of h.

(3)

(b) Find, to 1 decimal place, the size of the angle between OA and the plane ABCD.

(2)

(c) Find, to 1 decimal place, the size of the angle between the plane AOB and the plane ABCD.

(2)

The midpoint of OA is P and Q is the point on BC such that BQ : QC = 3:1

(d) Show that $PQ = 4\sqrt{5}$ cm.

(4)

(e) Find, to 1 decimal place, the size of angle *PQA*.

(4)

DO NOT WRITE IN THIS AREA

Question 10 continued				

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

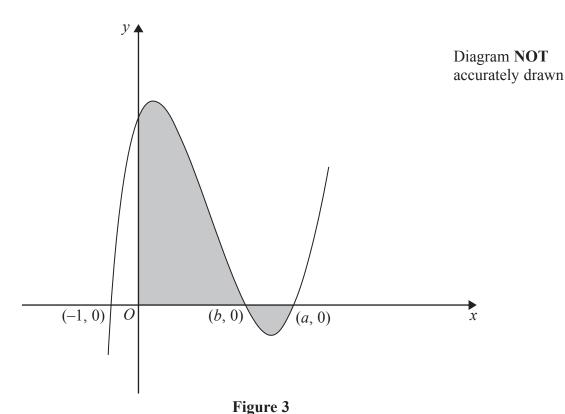


Figure 3 shows a sketch of the curve with equation y = f(x), which passes through the points with coordinates (-1, 0), (b, 0) and (a, 0) where 0 < b < a.

Given that $f'(x) = 6x^2 - 26x + 12$

- (a) find,
 - (i) the value of a,
 - (ii) the value of b.

(8)

(b) Use algebraic integration to determine the exact value of the total area of the shaded regions shown in Figure 3.

- /	$\overline{}$	1	
-	~	- 1	
	- 7	- 11	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

BLANK PAGE