STRAIGHT LINE MOTION MECHANICS ANSWERS OCR ALEVEL YEAR 1

Question		Expected Answers		Additional Guidance	
(a)		A quantity that has (both) magnitude / size and direction	B1	Not 'A quantity that has direction'	
(b)		Circled /underlined quantities are: acceleration, displacement and weight	B1	Note: All three need to be identified for a mark	
(c)	(i)	Constant / steady / uniform acceleration (up to 4 s) Or Velocity increases at a steady / constant / uniform rate Or Has acceleration of 3.5 (m s ⁻²)	B1	Not Accelerates up to 4 s / 'uniform motion' for the first B1 mark Not 'Accelerates at a constant rate'.	
		Constant / steady / uniform velocity (after 4 s) Or Zero acceleration Or Travels at a velocity of 24 (m s ⁻¹)	B1	Allow: 'speed' instead of velocity Allow: 2 mark for 'Constant acceleration and then constant speed / velocity'	
	(ii)	distance = area (under graph)	C1	Allow: The C1 mark is for distance = $\frac{1}{2}(10+24)\times4.0$	
		distance = 68 (m)	A1	Allow: Bald 68 (m) scores 2 marks	
				Bald $\frac{1}{2}(4\times14)$ or 28 (m) scores 1 mark for 'area of triangle'	
	(iii) 1	Answer in the range: 1.1 to 1.2 (s)	B1		
	(iii)	Same areas under graphs			
	_	$14t = 10t + (0.5 \times 3.5 \times t^2)$	C1	Note: The C1 mark is for substitution	
		$t = 2.28 \text{ (s)} \approx 2.3 \text{ (s)}$	A1	Allow: Bald 2.3 (s) scores 2 marks Allow: Bald 't = 2 × (iii)1.' Scores 2 marks	
		Total	9		

2.

a	The distance travelled (by the car) from when the	B1	Note: There must be reference to 'stimulus' and brakes.
	driver sees a problem and the brakes are applied		Not: 'speed × reaction time'
b	Distance / displacement	B1	
c(i)	distance = 20×0.5		
	distance = 10 (m)	B1	
c(ii)	distance = area under graph		
	distance = $\frac{1}{2} \times 20 \times 3.5$	C1	
	distance = 35 (m)	A1	Allow 1 mark if stopping distance of 45 m quoted No marks for an answer of '20 × 3.5 = 70 (m)'
d(i)	gradient = 'acceleration' / $a = \frac{v - u}{t} / a = \frac{\Delta v}{\Delta t}$	C1	The first mark is for selecting correct equation or stating $a = \text{gradient}$
	$a = (-)\frac{20}{3.5}$		
	3.5 deceleration = $5.71(4) \approx 5.7 \text{ (m s}^2\text{)}$	A1	Note: Ignore negative sign
d(ii)	force = 910 × 5.71	C1	
	force ≈ 5200 (N)	A1	Possible ecf from (d)(i)
e	Increases by a factor of 4	B1	
	Braking distance ∝ speed ² /	B1	
	' $Fx = \frac{1}{2} mv^2$ ' / speed doubles <u>and</u> time doubles		

Question	Expected Answers		Additional Guidance	
(a)	stopping distance = thinking distance + braking distance	B1		
(b)	Any two factors from: speed, mass, condition of tyres, condition of brakes, condition of road, gradient of road	B1×2	Allow: KE if neither mass nor speed is mentioned.	
	For each factor, correct description of how braking distance is affected E.g: • Greater speed means greater distance Or distance ∞ speed² (ora) • Greater mass means greater distance Or distance ∞ mass (ora) • Worn tyres / brakes implies less friction therefore greater distance (ora) • Wet / slippery / icy road means less friction therefore greater distance (ora) • Uphill means shorter distance (ora)	B1×2	For description marks, reference to 'distance' instead of 'braking distance' is fine For 1 st bullet point allow reference to kinetic energy Allow: 'more' or 'longer' instead of 'greater' when referring to distance Do not allow 'grip' for friction for 3 rd and 4 th bullet points	

4.

Question	Answers	Marks	Guidance	
(a)	acceleration = rate of <u>change</u> of <u>velocity</u>	B1	Allow: $a = \frac{v - u}{t}$ where v = final velocity, u = initial velocity and t = time Allow: 'acceleration = change in <u>velocity</u> over time' Not: 'acceleration = rate of change of <u>speed'</u> Not: mixture of quantity and unit, e.g. 'change of velocity per second'	
(b) (i)	$a = \frac{v - u}{t}$ (Any subject)	C1		
	$a = \frac{0 - 6.0}{2400}$	C1	Allow : $a = 6.0/2400$	
	2400 $a = (-) 2.5 \times 10^{-3} \text{ (m s}^{-2})$	A1	Ignore sign	
(ii)	distance = $\underline{\text{av speed}} \times \text{time}$ or $v^2 = u^2 + 2as$ distance = 3.0×2400 or $0 = 6.0^2 - (2 \times 2.5 \times 10^{-3} \times s)$	C1	Possible ecf. from (b)(i) Allow: $v^2 = u^2 + 2as$ with $v = 6.0$, $u = 0$ and $a = 0.0025$	
	distance = 7200 (m)	A1	Allow: Full credit for correct use of $s = ut + \frac{1}{2} at^2$ Note: Bald 7200 (m) scores 2 marks Allow: 1 mark for 's = $(6 \times 2400) + \frac{1}{2} \times 0.0025 \times 2400^2 = 21600 \text{ (m)'}$	
(iii)	Correct shape of curve of <u>decreasing</u> gradient starting from 0.0	M1		
	Graph passes through 40, 7.2	A1	Possible e.c.f. from (b)(ii) Allow the A1 mark if <i>x</i> is between 5-10 km at 40 min	
(c) (i)	It has (constant) acceleration / It accelerates (down the ramp)	B1	Allow: Its velocity / speed increases	
(ii)	The time taken by ball to travel between (successive) bells is the same / 'same as first trolley' / 'there is no change' (AW)	B1		
	Acceleration is independent of mass / acceleration is the same (for the heavier trolley) (AW)	B1		
	Total	11		

Question	Answers		Guidance	
(a)	A straight line through the <u>origin</u>	B1	Ignore graph after 0.5 s.	
(b)	The speed (of the car) is constant	B1	Note: This can only be scored if (a) is correct	
(c)	The <u>distance</u> travelled by the car after the brakes are applied until the car stops	B1	Note: Must have reference to car 'stopping' to score the mark	
(d)	Mass (of car) $(\frac{1}{2} mv^2 = Fx, \text{ hence braking) distance } \infty \text{ mass}$ Speed / velocity (of car)	M1 A1	Must use tick or cross on Scoris to show if the mark is awarded Allow: weight (of car) Not: 'distance increases with mass' Allow: distance $\propto m$	
	Speed / velocity (of car) ($\frac{1}{2}mv^2 = Fx$, hence braking) distance ∞ speed ²	A1	Not: 'distance increases with speed' Allow: distance $\propto v^2$	
(e)	Increases time (of impact / to slow down) / increases the distance (travelled by the driver)	B1	Must use tick or cross on Scoris to show if the mark is awarded	
	Smaller deceleration / acceleration	B1	Not: 'slow down acceleration'	
	Force is smaller because $F=ma$ and \mathbf{a} is smaller or force is smaller because $F=E_{\mathbf{k}}/\mathbf{x}$ and \mathbf{x} is bigger or force is smaller because $F=\frac{\Delta p}{\Delta t}$ and Δt is bigger	B1	Allow : $E_k = Fx$ and x is bigger	
			Not: Prevent crashing into windscreen / steering wheel	
	Total	10		

6.

uestion		Answer	Marks	Guidance
(a)		Difference: Velocity / vector has direction (and speed does not) or speed / scalar does not have direction (velocity has) Similarity: Both have the same unit / both have m s ⁻¹ (as the unit) / both have magnitudes	B1 B1	Not 'velocity is a vector / speed is a scalar' since it is stated in the question
(b)	(i)	distance = $2 \times \pi \times 0.60$ (= 3.77 m) / speed = $\frac{3.77}{12}$ speed = 0.31 (m s ⁻¹)	C1	,
			A1	Note : Answer to 3 sf is 0.314 (m s ⁻¹)
	(ii)	$s^2 = 0.60^2 + 0.60^2$	C1	
		s = 0.85 (m)	A1	Note: Answer to 3 sf is 0.849 (m) Note: 0.72 scores 1 mark (square root omitted)
	(iii)	The (change in) displacement is zero	B1	
	(iv)	The direction changes (even though the magnitude is the same)	B1	
		Total	8	

Question		Answer		Guidance
(a)		acceleration = rate of <u>change of velocity</u> (or acceleration = <u>change in velocity</u> / time)	B1	Allow ' $a = (v - u)/t$ ' or $\Delta v/t$ if v , u and t or Δv and t are defined
(b)		Mass and (net) force	B1	
(c)	(i)	1 acceleration	B1	Allow: velocity / speed increases
		2 deceleration / negative acceleration	B1	Allow: velocity / speed decreases
		Detail mark: Constant used in either 1 or 2 or reaches maximum height at 25 (s) or stops at 25 (s)	B1	Allow: 'uniform / same' for 'constant'
	(ii)	height = area under graph from 0 to 25 (s) height = $\frac{1}{2} \times 25 \times 200$ height = 2500 (m)	C1 C1 A1	Allow 1 mark for either 500 (m) or 2000 (m)
	(iii)	A sensible suggestion, for example: • $v^2 = 2 \times g \times 2500$, $v = 220$ (m s ⁻¹) – allow $g = 10$ (m s ⁻²) • For 200 (m s ⁻¹) at ground, the (maximum) height would only be 2040 (m) (with $g = 9.81$ m s ⁻²) or 2000 (m) (with $g = 10$ m s ⁻²) • (Burning) rocket fuel does work on the rocket (AW)	B1	
		Total	9	