Proof Past Paper Questions GCSE Edexcel – Non-Calculator

1.

Prove algebraically that the difference between the squares of any two consecutive odd numbers is always a multiple of $8\,$

2.

Prove that the square of an odd number is always 1 more than a multiple of 4

-	
•	
•	
_,	

- S is a geometric sequence.
 - (a) Given that $(\sqrt{x} 1)$, 1 and $(\sqrt{x} + 1)$ are the first three terms of S, find the value of x. You must show all your working.

(3)

(b) Show that the 5th term of S is $7 + 5\sqrt{2}$

Prove algebraically that the straight line with equation x - 2y = 10 is a tangent to the circle with equation $x^2 + y^2 = 20$

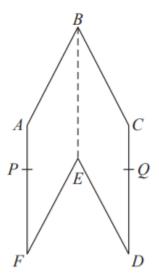
5.

Show that (x + 1)(x + 2)(x + 3) can be written in the form $ax^3 + bx^2 + cx + d$ where a, b, c and d are positive integers.

n is an integer greater than 1

Prove algebraically that $n^2 - 2 - (n-2)^2$ is always an even number.

The diagram shows a hexagon ABCDEF.



ABEF and CBED are congruent parallelograms where AB = BC = x cm. P is the point on AF and Q is the point on CD such that BP = BQ = 10 cm.

Given that angle $ABC = 30^{\circ}$,

prove that
$$\cos PBQ = 1 - \frac{(2 - \sqrt{3})}{200}x^2$$

ת	١

The product of two consecutive positive integers is added to the larger of the two integers.

Prove that the result is always a square number.

9.

Prove algebraically that the difference between the squares of any two consecutive integers is equal to the sum of these two integers.

Show that

$$(3x-1)(x+5)(4x-3) = 12x^3 + 47x^2 - 62x + 15$$

for all values of x.

11.

Here are the first five terms of an arithmetic sequence.

7 13 19 25 31

Prove that the difference between the squares of any two terms of the sequence is always a multiple of 24

Prove algebraically that

$$(2n+1)^2 - (2n+1)$$
 is an even number

for all positive integer values of n.

13.

Prove algebraically that the recurring decimal 0.25 has the value $\frac{23}{90}$

Show that
$$\frac{1}{6x^2 + 7x - 5} \div \frac{1}{4x^2 - 1}$$
 simplifies to $\frac{ax + b}{cx + d}$ where a, b, c and d are integers.