Proof Past Paper Answers GCSE Edexcel – Non-Calculator

1.

tion	Answer	Mark	Mark scheme	Additional guidance
	proof	C1	for writing an expression for an odd number, eg $2n + 1$ or $2n - 1$ (assuming n is any integer) or states n is even and eg $(n + 1)$ or $(n + 3)$ as odd numbers	
		C1	for a correct expression of the form $(2n+1)^2 - (2n-1)^2$ expanded eg $4n^2 + 12n + 9 - (4n^2 + 4n + 1)$ or $4n^2 + 4n + 1 - (4n^2 - 4n + 1)$ or $(2n+1+2n-1)(2n+1-(2n-1))$ or when n is even and eg $(n^2+6n+9) - (n^2+2n+1)$ (=4 $n+8$)	Expansion of $(2n-1)^2 - (2n+1)^2$ oe is acceptable
		C1	for a correct simplified expression as a multiple of 8 eg $8n + 8$ or $8n$ or when n is even and eg $4n + 8$ and full explanation as to why $4(n+2)$ is always a multiple of 8	

2.

estion	Answer	Mark	Mark scheme	Additional guidance
	Statement supported by	B1	writing a general expression for an odd number eg $2n+1$	Could be $2n - 1$, $2n + 3$, etc
	algebra	M1	(dep) for expanding ("odd number") ² with at least 3 out of 4 correct terms	Note that $4n^2 + 4n + 2$ or $2n^2 + 4n + 1$ in expansion of $(2n + 1)^2$ is to be regarded as 3 correct terms
		A1	for correct simplified expansion, eg $4n^2 + 4n + 1$	
		C1	(dep A1) for a concluding statement eg $4(n^2 + n) + 1$ (is one more than a multiple of 4)	

estion	Working	Answer	Mark	Notes
(a)		2	M1	for start to express the common ratio algebraically, eg $1/(\sqrt{x} - 1)$ or $(\sqrt{x} + 1)/1$ or $\sqrt{x} + 1 = k \times 1$ or $1 = k \times (\sqrt{x} - 1)$
			M1	for setting up an appropriate equation in x, eg $1/(\sqrt{x} - 1) = (\sqrt{x} + 1)/1$
			Cl	for convincing argument to show $x = 2$
(b)		Shown	M1	for expressing the relationship between the common ratio, one of the first three terms of the sequence and the fifth term, eg 5^{th} term = 3^{rd} term × (common ratio) ²
			Cl	for a complete explanation to include eg, $(\sqrt{2} + 1)(\sqrt{2} + 1)^2 = 7 + 5\sqrt{2}$

4.

Proof	M1	starts process to find point of intersection by substituting, eg $(10 + 2y)^2 + y^2 = (20)$
(supported)	M1	for expanding, eg $4y^2 + 20y + 20y + 100$ (3 out of 4 terms correct)
	MI	(dep M2) for 3-term quadratic equation ready for solving, eg $5y^2 + 40y + 80 = 0$
	M1	(dep on previous M1) for method to solve an equation of the form $ay^2 + by + c = 0$, eg by factorising or correct substitution into quadratic formula
	C1	fully correct method leading to $y = -4$ or $x = 2$ or $(y + 4)^2 = 0$ or $(x - 2)^2 = 0$ and statement eg only one point of intersection so the line is a tangent to the circle

5.

x^3+6x^2+11x+	M1	for method to find the product of any two linear expressions (3 correct terms) e.g. $x^2+x+2x+2$ or $x^2+2x+3x+6$ or $x^2+x+3x+3$
	M1	for method of multiplying out remaining products, half of which are correct (ft their first product) e.g. $x^3+x^2+2x^2+3x^2+2x+3x+6x+6$
	Al	cao

6.

2(2 <i>n</i> -3)	C1	correct expansion of brackets to give at least 3 terms from $n^2-2n-2n+4$
even	C 1	arrives at $n^2 - 2 - n^2 + 4n - 4$ oe
	C 1	reduces to $2(2n-3)$ or $4n-6$
	C1	for conclusion e.g. $2(2n-3)$ always even, $4n-6$ is always even since both are even numbers, they are multiples of 2.

	Proof	B1 M1	(indep) for stating $\cos 30 = \frac{\sqrt{3}}{2}$ for $PQ^2 = 10^2 + 10^2 - 2 \times 10 \times 10 \times \cos PBQ$ or $AC^2 = x^2 + x^2 - 2 \times x \times x \times \cos 30 \ (=x^2(2-\sqrt{3}))$ oe
		M1	for $\cos PBQ = \frac{10^2 + 10^2 - PQ^2}{2 \times 10 \times 10}$ (implies previous M1)
$\frac{\cos PBQ =}{10^2 + 10^2 - x^2(2 - \sqrt{3})}{200}$		M1	for $\cos PBQ = \frac{10^2 + 10^2 - (x^2 + x^2 - 2 \times x \times x \times \cos 30)}{2 \times 10 \times 10}$
$=\frac{200-x^2(2-\sqrt{3})}{200}$			
		A1	conclusion of proof with all working seen

8.

proof	C1	starts proof eg $n(n+1)$ or $(n-1)\times n$
	C1	$n(n+1) + n+1$ or $(n-1) \times n + n$
	C1	for convincing proof including $(n+1)^2$ or n^2

9.

estion	Working	Answer		Notes	
		proof	M1	for any two consecutive integers	for sight of $p^2 - q^2 = (p - q)(p + q)$
				expressed algebraically eg $n + 1$ and n	
		(supported)	M1	(dep) for the difference between the	for deduction that $p - q = 1$
				squares of "two consecutive integers" expressed algebraically eg $(n + 1)^2 - n^2$	
			A1	for correct expansion and	for linking these two statements eg
				simplification of difference of squares	substitution of 1 for $p-q$
				eg 2n + 1	2
			C1	for showing statement is correct (with	for fully stated proof and deduction eg p^2 $-q^2 = 1 \times (p+q) = p+q$
				supportive evidence) eg $n + n + 1 = 2n + 1$ and	$-q = 1 \times (p+q) - p+q$
				eg $n+n+1-2n+1$ and $(n+1)^2-n^2=2n+1$	

10.

$(3x-1)(4x^2+20x-3x-15)$ $(x+5)(12x^2-4x-9x+3)$	Fully correct algebra to show given result	M1 M1 A1	for method to find the product of any two linear expressions; eg. 3 correct terms or 4 terms ignoring signs (dep) for method of 6 products, 4 of which are correct (ft their first product) for fully accurate working to give the required result
$(4x-3)(3x^2-x+15x-5)$			

11.

Working	Answer	Notes		
	Proof	B1 state the difference of two squares in algebraic notation eg $p^2 - q^2$ M1 for writing down expressions for two different terms from the sequence eg $6n + 1$ and $6m + 1$ M1 for expanding one squared bracket to obtain 4 terms with all 4 correct without considering signs or for 3 terms out of 4 correct with correct signs A1 for $36(m^2 - n^2) + 12(m - n)$ oe M1 (dep M2) for factorising their expression by 12 C1 for fully correct working with statement justifying $(m - n)(3(m + n) + 1)$ is even eg considering odd and even combinations		

stion	Working	Answer	Notes
	$(4n^{2}+2n+2n+1)$ $-(2n+1)=$ $4n^{2}+4n+1-2n-1$ $=4n^{2}+2n$ $=2n(2n+1)$	proof (supported)	 M1 for 3 out of 4 terms correct in the expansion of (2n + 1)² or (2n + 1) {(2n + 1) - 1} P1 for 4n² + 2n or equivalent expression in factorised form C1 for convincing statement using 2n(2n + 1) or 2(2n² + n) or 4n² + 2n to prove the result

13.

$\frac{23}{90}$	M1	For a fully complete method as far as finding two correct decimals that, when subtracted, give a terminating decimal (or integer) and showing intention to subtract eg $x = 0.2\dot{5}$ so $10x = 2.5\dot{5}$ then $9x = 2.3$ leading to
	A1	correct working to conclusion

2x+1	M1 for $(3x \pm 5)(2x \pm 1)$ or $(2x + 1)(2x - 1)$	
3x+5	M1 $\frac{1}{(3x\pm5)(2x\pm1)} \times (2x+1)(2x-1)$	
	A1	