Projectiles Past Paper Answers A Level Physics WJEC

1.

Quest	ion	Marking details	Marks available AO1 AO2 AO3 Total					
Quest	ion	Marking details	AO1	AO2	AO3	Total	Maths 2 4	Prac
(a)	(i)	$ut + \frac{1}{2}(v - u)t$ / area of trapezium i.e. $\frac{1}{2}(u + v)t$ (1) Displacement [in time t] (1)	1	1		2	4	
	(ii)	Use of light gates (1) Measure time for a fixed distance (1)	1			2		2
(b)	(i)	Height of cliff: Use of $x = ut + \frac{1}{2} at^2$ (1) $ut = 0$ and $a = 9.8 [ms^2]$ (1) x = 122.5 [m] (1) Vertical velocity: Use of $v = u + at$ (1) $v = 49 [ms^3]$ (1) Initial horizontal velocity: $u = 2 [ms^3]$	1	1 1 1		6	4	
	(ii)	Straight diagonal line (1) Starting at (0,0) finishing at (5,49) (1) Horizontal line starting at (0,2) (1)		1 1 1		3	3	
(c)		Increase time of flight (1) Reduce final velocity (1)			1	2		
		Question 2 total	5	8	2	15	9	2

2.

		Marking dataila	I	marks av	/allable			
uestic	on	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(a)		Horizontal remains constant (1) vertical decreases to zero then increases / downward component increases (1)	2			2		
(b)	(i)	$u_y = u\sin 20$ and $u_x = u\cos 20$ (1) $t = 0.035u$ or $t = \frac{21}{u\cos 20}$ (1) Horizontally $x = u\cos 20 t$ (1) $v = 25.3 [\text{m s}^{-1}]$ (1)		4		4	4	
	(ii)	Use of $v^2 = u^2 + 2ax$ (1) Use $v^2 = 0$ and manipulation (1) x = 3.82 [m] ball is above the bar (1)			3	3	3	
	(iii)	Ball wouldn't go as high / horizontal velocity decreases (1) [Vertical] velocity falls to $v = 0$ quicker / ball on the way down by the time it crosses the line (1)			2	2	4	
		Question 7 total	2	4	5	11	7	0

3.

,	Quest	ion	Marking details		Marks a	vailable			
(Juest	ion	987	A01	AO2	AO3	Total	Maths	Prac
3	(a)		$3 \times 10^{-3} \times 85 = 2.6 v$ or $0 = 3 \times 10^{-3} \times 85 - 2.6 v$ (1) $v = 0.10 [\text{m s}^{-1}] / 0.098 [\text{m s}^{-1}]$ (1)		2		2	2	
	(b)	(i)	Time = $\frac{40}{85}$ = 0.47[s] (1) Use of $s = ut + \frac{1}{2}at^2$ (1)	1	1				
			s = 1.08[m](1)		1		3	3	
		(ii)	Vertical $v = 4.6 \text{ [m s}^{-1}]$ (1) Tan $\theta = \left(\frac{4.6}{85}\right)$ ecf for vertical velocity (1) $\theta = 3.1 \text{ [°]}$ (1)		3		3	3 3	
	(c)	(i)	Greater (1) <u>Horizontal</u> velocity reduced (1)			2	2		
		(ii)	KE before = $10.84 \text{ J} / \text{ KE after} = 1.35 \text{ J}$ (1) Difference in KE = 9.49 J (1) $F = \frac{9.49}{40} = 0.24 \text{ [N]}$ (1) Alternative: $F = 0.5 \times 3 \times 10^{-3} \times \frac{85(-1) - 30^{2}}{40}$ 1) F = 0.24 [N] (1) Alternative: Using $v^{2} = u^{2} + 2as$, $a = 79 \text{ m s}^{-2}$ (1) Using $F = ma$ (1) F = 0.24 [N] (4)		3		3	3	
			F = 0.24 [N] (1) Question 3 total	1	10	2	13	11	0

4.

0	Marking details		marks available							
Question			AO1 AO2		Total	Maths	Prac			
(a) (i)	Constant horizontal velocity if/because no horizontal force [1] That is if air resistance ignored or air resistance would/will make horizontal velocity decrease [1]	2			2					
(ii)	From horiz motion, e.g. $t=\frac{6.0}{9.0}=0.667$ [s] [1] So from vertical motion, $y=\frac{1}{2}9.81\times\left(\frac{6.0}{9.0}\right)^2=2.18$ [m] ecf on t [1] Conclusion consistent [1] Alternative: From vertical motion, e.g. $t=\sqrt{\frac{2\times2.2}{9.81}}=0.67$ [0] [s] ecf on t [1] From horiz motion, $v_{\rm h}=\frac{6.0}{0.67}=8.96$ [m s ⁻¹] ecf on t or $x=9.0\times0.67=6.03$ [m] [1] Conclusion consistent [1] Alternative: Time from horiz motion = 0.67 [s] [1] Time from vertical motion = 0.67 [s] [1] Conclusion consistent [1]			3	3	2				

0	Maulium dataila			Marks	available		
Question	Marking details	A01	AO2	AO3	Total	Maths	Prac
(b)	Vertical velocity component, $v_{\rm v}$ = 6.5 [m s ⁻¹] or 6.6 [m s ⁻¹] [1] Diagram showing $v_{\rm v}$, $v_{\rm h}$ and $v_{\rm res}$ or by implication if correct answer [1] Angle to horiz = 36° or angle to vertical = 54° [1] ecf on $v_{\rm v}$ Magnitude of velocity = 11 [m s ⁻¹] [1] ecf on $v_{\rm v}$		4		4	3	
3h 3h	Question 1 total	2	4	3	9	5	0

5.

•	Questi	on	Marking details	marks available				Total Maths F	
•	(uesti	OII	warking details	AO1	AO2	AO3	Total	Maths	Prac
5	(a)		$v = at$ and $v^2 = 2ax$ seen (i.e. consequence of $u = 0$ on equations) (1) $a^2t^2 = 2ax$ seen (1) [implies first mark]	1	1		2	2	
	(b)		Graph 3 (1) Vertical: constant acceleration due to [force of] gravity (1) Horizontal: no acceleration (accept constant speed or constant velocity) because no forces act (1)	1	1 1		3	1	
	(c)	(i)	$t = \frac{1.8}{3.4}$ [= 0.53 s] (1) Height = ½ × 9.81 × 0.53² (1) substitution and $u = 0$ (ecf on t) Height = 1.37 [m] (1)	1	1		3	3	
		(ii)	Vertical velocity = $9.81 \times 0.53 = 5.2 \text{ [m s}^{-1}]$ (1) (ecf on t) [Alternative: vertical velocity = $((2 \times 9.81 \times 1.37)^{1/2})$ (ecf on h) Pythagoras: $V_R^2 = 5.2^2 + 3.4^2$ (1) (ecf on vertical velocity) $V_R = 6.2 \text{ [m s}^{-1}]$ (1) At 57° to the horizontal (1) (apply ecf if incorrect vertical or resultant velocity used to calculate angle)	1	1 1 1		4	4	
	(d)		Untrue and link to Flight time depends on (two × (1) from):			2	2		
			Question 5 total	4	8	2	14	10	0

6.

,			Modeina deteile		Marks	available			
(Juest	ion	marking details	AO1	AO2	AO3	Total	Maths	Prac
6	(a)	(accept acceleration) / changes at 9.81 Horizontal: Constant (1) Reason: Gravity acts vertically or no for 0.15 [m s ⁻¹] i.e. $\frac{(1000)}{(110 \times 60)}$ or 0.54 km (ii) Correct substitution into $x = ut + \frac{1}{2} at^2$ le.g. $1000 = \frac{1}{2} \times a \times (55 \times 60)^2$ (1) At least one mathematical step shown $a = 0.00018$ [m s ⁻²] e.g. $a = \frac{2000}{1.09 \times 10^7}$ Alternative: u_{vertical} calculated from $x = \frac{1}{2}(u + v)t$ i.e. $t = \frac{1}{2}(u + v)t$ i.e. $t = \frac{1}{2}(u + v)t$ to show $t = \frac{1}{2}(u + v)t$ to s	Vertical: Decreasing (accept deceleration), then increasing (accept acceleration) / changes at 9.81 m s ⁻² (1) Horizontal: Constant (1) Reason: Gravity acts vertically or no forces act horizontally (1)	3			3		
	(b)	(i)	0.15 [m s ⁻¹] i.e. $\frac{(1000)}{(110 \times 60)}$ or 0.54 km/h		1		1		
		(ii)	At least one mathematical step shown leading to $a = 0.00018 \text{ [m s}^{-2}] \text{ e.g. } a = \frac{2000}{1.09 \times 10^7}$ (1)	1	1		2	2	
		(iii)		1	1 1		3	3	

WWW.LONDONMATHSTUTORS.CO.UK

Question	Marking d	otaile		Marks available				
Question	Marking u	etalis	AO1	AO2	AO3	Total	Maths	Prac
(c)	For Job creation Cost/year reasonable Generate interest in science New technologies developed e.g. renewable Improve understanding of origin of life on earth 3 statements given must expand of No mark for agreeing or disagreeing				3	3		
	Question 6 total		5	4	3	12	5	0