PROBLEM SOLVING - GCSE EDEXCEL (Higher)

Marking Schem

1MA0_1H					
Question		Working	Answer	Mark	Notes
1	(a)	$\begin{aligned} & 360 \div 60=6 \\ & 300 \div 60=5 \\ & 6 \times 5= \end{aligned}$	Yes and 303	M	1 for dividing side of patio by side of paving slab eg. $360 \div 60$ or $300 \div 60$ or $3.6 \div 0.6$ or $3 \div 0.6$ or 6 and 5 seen (may be on a diagram) or 6 divisions seen on length of diagram or 5 divisions seen on width of diagram M1 for correct method to find number of paving slabs eg. $(360 \div 60) \times(300 \div 60)$ oe or 6×5 or 30 squares seen on diagram (units may not be consistent) A1 for Yes and 30 (or 2 extra) with correct calculations OR M1 for correct method to find area of patio or paving slab eg 360×300 or 108000 seen or 60×60 or 3600 seen or 3.6×3 or 10.8 seen or 0.6×0.6 or 0.36 seen M1 for dividing area of patio by area of a paving slab eg. $(3.6 \times 3) \div(0.6 \times 0.6)$ oe (units may not be consistent) A1 for Yes and 30 (or 2 extra) with correct calculations OR M1 for method to find area of patio or area of 32 slabs eg. $60 \times 60 \times 32$ or 360×300 M1 for method to find both area of patio and area of 32 slabs eg. $60 \times 60 \times 32$ and 360×300 (units may not be consistent) A1 for Yes and 115200 and 108000 OR Yes and 11.52 and 10.8 NB : Throughout the question, candidates could be working in metres or centimetres

\qquad

PAPER: 1MA0_1H					
Question		Working	Answer	Mark	Notes
4		$\frac{20 \times 300}{0.5}$	12000	3	B1 for 20 or 300 used M1 for " 20 " \times " 300 " or $\frac{\text { " } 20 "}{0.5}$ or $\frac{" 300 "}{0.5}$, values do not need to be rounded A1 for answer in the range 11200-13200 SC B3 for 12000 with or without working
5		$\begin{aligned} & \text { LCM }(80,50)=400 \\ & \text { Matt } 400 \div 50=8 \\ & \text { Dan } 400 \div 80=5 \end{aligned}$ OR $\begin{aligned} & 50=2 \times 5(\times 5) \\ & 80=2 \times 5(\times 2 \times 2 \times 2) \end{aligned}$	Matt 8 Dan 5	3	M1 lists multiples of both 80 (seconds) and 50 (seconds) (at least 3 of each but condone errors if intention is clear, can be in minutes and seconds) or use of 400 seconds oe. M1 (dep on M1) for a division of "LCM" by 80 or 50 or counts up "multiples" (implied if one answer is correct or answers reversed) A1 Matt 8 and Dan 5 SC B1 for Matt 7, Dan 4 OR M1 for expansion of both 80 and 50 into prime factors. M1 demonstrates that both expansions include 10 oe A1 Matt 8 and Dan 5 SC B1 for Matt 7, Dan 4

Paper: 1MA0/1H				
Question	Working	Answer	Mark	Notes
6	Sq G S Tot F 2 4 15 21 M 6 14 9 29 Tot 8 18 24 50	4	4	M1 for a correct first step which results in a value that could be in the table: eg. $50-18-8(=24)$ or $50-21(=29)$ or $8-6(=2)$ M1 for a correct method to find a second value that could be in the table using their first value eg " 29 " $-9-6(=14)$ or " 24 " $-9(=15)$ M1 for a fully correct and complete method. A1 cao
7	$\begin{aligned} & 40,80,120 \\ & 15,30,45,60,75,90 \\ & 105,120 \end{aligned}$ $\begin{aligned} & 40=2 \times 2 \times 2 \times 5 \\ & 15=3 \times 5 \end{aligned}$	3 and 8 or any multiple of 3,8	3	M1 for multiples of both 40 and 15 (at least 2 of each shown but condone errors if intention is clear) or for 40×15 M1 (dep on M1) for a complete method to find a common multiple of 40 and 15 , eg. 120, 240, 600 condoning one arithmetic error in any lists of multiples shown A1 for 3,8 or any multiple of 3,8 OR M1 for factors 2,2,2,5 and factors 3,5 M1 (dep on M1) for a complete method to find a common multiple of 40 and 15 A1 for 3,8 or any multiple of 3,8

Paper: 1MA0/1H				
Question	Working	Answer	Mark	Notes
10		270	3	M1 for correct use of formula for volume of a cylinder using exact or (some) approximate figures eg $\pi \times 31^{2} \times 97.5$ or $\pi \times 31^{2} \times 100$ or using an estimate of π eg $\pi=3$ in the volume formula M1 for a complete method to find an estimate for the volume in cm^{3} with at least 2 values rounded $\text { eg } \pi \times 30^{2} \times 100(=270000) \quad \text { eg } 3.1 \times 30^{2} \times 100 \quad \text { eg } 3 \times 31^{2} \times 100$ A1 accept answer in the range $270-300$ from a method using estimates
11		130	4	M1 for setting up two correct equations eg $3 p+4 c=440$ $4 p+3 c=470$ M1 for adding the two equations eg $7 \mathrm{p}+7 \mathrm{c}=910$ or for a correct method to eliminate one variable (allow one error) M1 for a method to find $\mathrm{p}+\mathrm{c} \quad$ eg $910 \div 7$ or for a complete method to find both p and $\mathrm{c} \quad(\mathrm{p}=80, \mathrm{c}=50)$ A1 for 130 or $£ 1.30$ (p) NB: Allow any letters for variables. Allow a non-algebraic approach eg 7 kg potatoes and 7 kg carrots costs a total of 910

