Nuclear Physics - MS | nuclei | do not accept atoms | 1 | |---|---|---| | decreases | | 1 | | m = 0.004 (kg) | | 1 | | E = 0.004 × 5200 × 50 000 000 | allow a correct substitution of an incorrectly/not converted value of m | 1 | | E = 1.04 × 10 ⁹ (J)
or
E = 1 040 000 000 (J) | allow a correct calculation using
an incorrectly/not converted
value of m | 1 | | any two from: to make sure the fusion process is possible to develop an understanding of the process to make adaptations to the process to assess the efficiency of the process to make predictions assess safety risks to assess environmental impact set-up cost is lower (for small scale experiments) | | 2 | ## WWW. London Maths Tutors. co. uk | releases carbon dioxide | allow releases greenhouse gases | 1 | |---------------------------------|-----------------------------------|---| | which causes global warming | allow which causes climate change | 1 | | OR | | | | releases particulates | | | | which causes global dimming | | | | or | | | | which causes breathing problems | | | | OR | | | | releases sulfur dioxide | | | | which causes acid rain | | | | OR | | | | releases nitrogen oxides | | | | which causes breathing problems | | | | or | | | | which causes acid rain | | | | 148 | | 1 | |---|---|---| | D and E | | 1 | | line between B and 86 protons | | 1 | | same line between B and 222 mass number | | 1 | | can't predict which nucleus will decay next | | 1 | | or can't predict when a (particular) nucleus will decay | | | | one alpha decay would decrease proton number by 2 | | 1 | | two beta decays would increase proton number by 2 | | 1 | | so the proton / atomic number of
the final nucleus is the same as
the proton / atomic number of
the original nucleus | this mark is dependent on scoring the first two marks | 1 | | Any one from: • (medical) x-rays • radiotherapy • nuclear weapons (testing) • named nuclear disaster eg Chernobyl / Fukushima / Three Mile Island. | allow CT scans allow nuclear fallout ignore radioactive / nuclear waste | 1 | |--|---|---| | uranium / plutonium | ignore any number given allow thorium | 1 | | neutron absorbed by a uranium nucleus | | 1 | | nucleus splits into two parts | allow an atom splits into two parts if 1st marking point doesn't | 1 | | and (2 / 3) neutrons (are released) | score | 1 | | and gamma rays (are emitted) | | 1 | | lighter nuclei join to form heavier nuclei | allow specific examples | 1 | | some of the mass (of the nuclei) is converted to energy (of radiation) | | 1 | | | | | | ²⁰⁶ ₈₂ Pb | | 1 | |---|--|---| | 8270 | | 1 | | alpha radiation is highly ionising | | 1 | | causing an increased risk of cancer or | | 1 | | organ failure
or | | | | radiation sickness / poisoning or | | | | mutation of genes / DNA or | | | | damage to cells / tissues / organs | allow kill cells | | | until the radioactive material is removed / excreted or activity of radioactive material reaches / approaches | allow all the alpha radiation is absorbed by the body | 1 | | background radiation levels | ignore references to half-life | | | $\frac{414}{138} = 3 \text{ (half-lives)}$ | an answer of 1.16 × 10 ⁻³ (g) scores 3 marks | 1 | | 1.45 × 10 ⁻⁴ × 2 × 2 × 2 | | 1 | | = 1.16 × 10 ⁻³ (g) or | | 1 | | = 0.00116 (g) | | | | count rate = $\frac{819}{60}$ count rate = 13.65 corrected count rate = 13.35 (per second) | scores 3 marks an answer of 13.95 (per second) scores 2 marks an answer of 801 (per second) scores 2 marks allow an answer of background = 0.30 × 60 = 18 (per minute) corrected count rate = 819 – 18 corrected count rate = 801 per minute | 1
1
1 | |--|---|-------------| | activity = 1250 × 180
activity = 225 000 (Bq) | an answer of 225 000 (Bq)
scores 2 marks | 1 1 | | yearly dose = 0.003 × 365 which is << 100 (mSv) or (well) below the lowest dose with evidence of causing cancer / harm | allow yearly dose = 1.095 (mSv) | 1 1 | | 06.1 | smoke absorbs / stops alpha radiation | allow alpha particles for alpha radiation alpha radiation does not reach the detector is insufficient | 1 | |------|---|--|---| | 06.2 | alpha radiation is not very penetrating or alpha radiation does not penetrate skin | allow alpha particles for alpha radiation allow alpha radiation does not travel very far (in air) | 1 | | 06.3 | beta and gamma radiation will
penetrate smoke
no change (in the count rate)
would be detected | allow beta and gamma radiation
will not be stopped by smoke
allow the change detected (in
the count rate) would be too
small | 1 | | 06.4 | (a long half-life means) the count rate is (approximately) constant or a short half-life means the count rate decreases quickly until 1.3 half-lives the count rate is above 80 per second or until 1.3 half-lives the count rate is above the threshold for the smoke alarm to be activated | allow activity of source is
(approximately) constant allow after 1.3 half-lives the
count rate is below 80 per
second | 1 | | | or
after 1.3 half-lives the smoke
alarm will be activated all the
time | so don't have to replace source
or smoke detector is insufficient | | # WWW.LondonMathsTutors.co.uk | 06.5 | Level 2: Relevant points (reasons / causes) are identified, given in detail and logically linked to form a clear account. Level 1: Relevant points (reasons / causes) are identified, and there are attempts at logically linking. The resulting account is not fully clear. | | | |------|---|--|--| | | | | | | | No relevant content | | | | | Indicative content short half-life or half-life of a few hours (short half-life means) less damage to cells / tissues / organs / body low ionising power (low ionising power means) less damage to cells / tissues / organs / body highly penetrating (highly penetrating means) it can be detected outside the body emits gamma radiation | | | | cannot predict which dice / atom will 'decay' cannot predict when a dice / atom will 'decay' | accept answers given in terms of 'roll a 6' | 1 | |--|---|---| | 3.6 to 3.7 (rolls) | allow 1 mark for attempt to read graph when number of dice = 50 | 2 | | 90 | | 1 | | uranium | | 1 | | beta | | 1 | | proton number has gone up (as neutron decays to proton and e ⁻) | | 1 | | prevents contamination | | 1 | | or | | | | prevents transfer of radioactive material to teacher's hands | | | | which would cause damage / irradiation over a longer time period. | | 1 |