<u>Iteration and Numerical Methods Past Paper Questions GCSE Edexcel - Calculator</u>

1.

Using
$$x_{n+1} = -2 - \frac{4}{x_n^2}$$

with $x_0 = -2.5$

(a) find the values of x_1 , x_2 and x_3

(b) Explain the relationship between the values of x_1 , x_2 and x_3 and the equation $x^3 + 2x^2 + 4 = 0$

(a)	Show	that	the	equation	$3x^{2}$ —	$x^{3} +$	3 =	0 can	be	rearranged	to	give

$$x = 3 + \frac{3}{x^2}$$

(2)

(b) Using

$$x_{n+1} = 3 + \frac{3}{x_n^2}$$
 with $x_0 = 3.2$,

find the values of x_1 , x_2 and x_3

(3)

(c) Explain what the values of x_1 , x_2 and x_3 represent.

(1)

(a) Show that the equation $x^3 + 4x = 1$ has a solution between x = 0 and x = 1

(b) Show that the equation $x^3 + 4x = 1$ can be arranged to give $x = \frac{1}{4} - \frac{x^3}{4}$

(c) Starting with $x_0 = 0$, use the iteration formula $x_{n+1} = \frac{1}{4} - \frac{x_n^3}{4}$ twice, to find an estimate for the solution of $x^3 + 4x = 1$

(a) Show that the equation $x^3 + x = 7$ has a solution between 1 and 2

(2)

(b) Show that the equation $x^3 + x = 7$ can be rearranged to give $x = \sqrt[3]{7 - x}$

(1)

(c) Starting with $x_0 = 2$, use the iteration formula $x_{n+1} = \sqrt[3]{7 - x_n}$ three times to find an estimate for a solution of $x^3 + x = 7$

(a) Show that the equation $x^3 + 7x - 5 = 0$ has a solution between x = 0 and x = 1

(b) Show that the equation $x^3 + 7x - 5 = 0$ can be arranged to give $x = \frac{5}{x^2 + 7}$

(c) Starting with $x_0 = 1$, use the iteration formula $x_{n+1} = \frac{5}{x_n^2 + 7}$ three times to find an estimate for the solution of $x^3 + 7x - 5 = 0$

$$f(x) = 2x^3 - x - 4.$$

(a) Show that the equation f(x) = 0 can be written as

$$x = \sqrt{\left(\frac{2}{x} + \frac{1}{2}\right)}. (3)$$

The equation $2x^3 - x - 4 = 0$ has a root between 1.35 and 1.4.

(b) Use the iteration formula

$$x_{n+1} = \sqrt{\left(\frac{2}{x_n} + \frac{1}{2}\right)},$$

with $x_0 = 1.35$, to find, to 2 decimal places, the values of x_1 , x_2 and x_3 . (3)

7.

$$f(x) = x^3 + 2x^2 - 3x - 11$$

(a) Show that f(x) = 0 can be rearranged as

$$x = \sqrt{\left(\frac{3x+11}{x+2}\right)}, \quad x \neq -2.$$

The equation f(x) = 0 has one positive root α .

The iterative formula $x_{n+1} = \sqrt{\left(\frac{3x_n + 11}{x_n + 2}\right)}$ is used to find an approximation to α .

(b) Taking $x_1 = 0$, find, to 3 decimal places, the values of x_2 , x_3 and x_4 . (3)

$$f(x) = -x^3 + 3x^2 - 1.$$

(a) Show that the equation f(x) = 0 can be rewritten as

$$x = \sqrt{\left(\frac{1}{3-x}\right)}. (2)$$

(b) Starting with $x_1 = 0.6$, use the iteration

$$x_{n+1} = \sqrt{\left(\frac{1}{3 - x_n}\right)}$$

to calculate the values of x_2 , x_3 and x_4 , giving all your answers to 4 decimal places.

(2)

9.

$$f(x) = 3x^3 - 2x - 6$$

(a) Show that f(x) = 0 has a root, α , between x = 1.4 and x = 1.45

(b) Show that the equation f(x) = 0 can be written as

$$x = \sqrt{\left(\frac{2}{x} + \frac{2}{3}\right)}, \quad x \neq 0.$$

(c) Starting with $x_0=1.43$, use the iteration

$$x_{n+1} = \sqrt{\left(\frac{2}{x_n} + \frac{2}{3}\right)}$$

to calculate the values of x_1 , x_2 and x_3 , giving your answers to 4 decimal places.

(3)

$$f(x) = x^3 + 3x^2 + 4x - 12$$

(a) Show that the equation f(x) = 0 can be written as

$$x = \sqrt{\left(\frac{4(3-x)}{(3+x)}\right)}, \qquad x \neq -3$$
(3)

The equation $x^3 + 3x^2 + 4x - 12 = 0$ has a single root which is between 1 and 2

(b) Use the iteration formula

$$x_{n+1} = \sqrt{\left(\frac{4(3-x_n)}{(3+x_n)}\right)}, n \geqslant 0$$

with $x_0 = 1$ to find, to 2 decimal places, the value of x_1 , x_2 and x_3 .

(3)

The root of f(x) = 0 is a