<u>Iteration and Numerical Methods Past Paper Answers GCSE Edexcel - Calculator</u>

1.

X1=-2.64	M1	for substitution of -2.5 into the equation (to get $x_1 = -2.64$)
X2=-2.57392	M1	for substitution of " x_1 = -2.64" and " x_2 = -2.57392" to give x_2 and x_3
X3=-2.603767255	A1	for $x_1 = -2.64$ oe, $x_2 = -2.57(392)$ and $x_3 = -2.6(03767255)$
		Condone $x_3 = -2.61$ if $x_2 = -2.57$ is used in the substitution
Statements	C1	Connection between equation and iterative form in (a) e.g. rearrangement
	C1	Statement e.g. iteration is an estimation of a solution

2.

(a)		Rearrangement	M1 for re arranging to $\chi^3 =$
			C1 a clear step to show re arrangement
(b)	$x_1 = 3.29296875$ $x_2 = 3.276659786$	Values	M1 for substitution of 3.2 into the iterative formula A1 for $x_1 = 3.292(96875)$
	$x_3 = 3.279420684$	Statement	A1 for $x_2 = 3.276(659786)$ and $x_3 = 3.279(420684)$
(c)		Statement	C1 Statement eg estimates of a solution to the original equation

(a)	$F(x) = x^3 + 4x - 1$ F(0) = -1, F(1) = 4	Shown	M1 Method to establish at least one root in $[0,1]$ e.g $x^3 + 4x - 1$ (=0) and $F(0)(=-1)$, $F(1)(=4)$ oe A1 Since there is a sign change there must be at least one root $0 < x < 1$ (as F is continuous)
(b)	$4x = 1 - x^3$ Or $\frac{x^3}{4} + x = \frac{1}{4}$	Shown	C1 C1 for at least one correct step and no incorrect ones
(c)	$x_1 = \frac{1}{4} - \frac{0}{4} = \frac{1}{4}$ $x_2 = \frac{1}{4} - \frac{\left(\frac{1}{4}\right)^3}{4} = \frac{1}{4} - \frac{1}{256}$	0.246(09375) Or <u>63</u> <u>256</u>	B1 $x_1 = \frac{1}{4}$ M1 M1 for $x_2 = \frac{1}{4} - \frac{\left(\frac{1}{4}\right)^{1/3}}{4}$ A1 A1 for 0.246(09375) or $\frac{63}{256}$ oe

4.

••	1 111511 61	172002 25	171at it Scheme	Auditional Salatite
(a)	Correct statement	C1	for substituting both 1 and 2 into $x^3 + x$ or into $x^3 + x - 7$	All arithmetic shown must be correct.
				Ignore any additional trials shown.
		C1	for values 2 and 10 plus explanation that these are above and below 7, or for values -5 and 3 plus explanation that there is a change of sign, thus implying a solution lies between 1 and 2	
(b)	Correct	C1	for correct algebraic rearrangement	
(0)	rearrangement			
(c)	1.74	M1	for substitution of 2 into the formula	$x_1 = 1.70997$
			$eg \sqrt[3]{7-2} (= 1.70997)$	
			3 ($x_2 = 1.74241$
		M1	for a substitution of x_1 to give x_2 (= 1.74241)	$x_3 = 1.73884$
			101 11 11 11 11 11 11 11 11 11 11 11 11	Accept an accuracy of 2 dp or more
		A1	for answer in the range 1.738 to 1.74	rounded or truncated for values of
			6	x_1 and x_2
				Award the marks for 1.7 on the answer
				line provided correct iterations are shown
				in the working space.

5.

ostion	TOTKING	AMONG	ITIMI N	:10163
(a)	- 10	Shown	M1	for method to establish at least one root between $x = 0$ and $x = 1$,
			Cl	eg $f(0) = -5$ and $f(1) = 3$ for correct values and a deduction about the roots eg as there is a sign change there must be at least one root between $x = 0$ and $x = 1$ (as f is continuous)
(b)		Shown	C1	for a correct first step in rearrangement, eg $x(x^2 + 7) - 5 = 0$ or $x^3 + 7x = 5$
			C1	for clear and correct steps showing complete rearrangement
(c)	$x_1 = 0.625$	0.6704(483001)	MI	for substitution of 1 into the formula (to get 0.625)
1-7	$x_2 = 0.6765327696$		M1	for substitution of " $x_1 = 0.625$ " and " $x_2 = 0.6765327696$ " to give x_2 and x_3
	$x_3 = 0.6704483001$		A1	0.6704(483001)
(d)		Comment	MI	substitutes answer to (c) into expression (to get -0.00549)
			C1	appropriate comment, eg accurate as answer is close to 0

(a)
$$2x^{2}-1-\frac{4}{x}=0 \qquad \text{Dividing equation by } x \text{ M1}$$

$$x^{2}=\frac{1}{2}+\frac{4}{2x} \qquad \text{Obtaining } x^{2}=\dots$$

$$x=\sqrt{\left(\frac{2}{x}+\frac{1}{2}\right)} \implies \text{cso} \qquad \text{A1} \qquad \text{(3)}$$
(b)
$$x_{1}=1.41, x_{2}=1.39, x_{3}=1.39$$
If answers given to more than 2 dp, penalise first time then accept awrt above.
$$\text{B1, B1, B1}$$
(3)

7.

	$f(x) = x^3 + 2x^2 - 3x - 11$			
(a)	$f(x) = 0 \implies x^3 + 2x^2 - 3x - 11 = 0$	Sets $f(x) = 0$ (can be implied) and takes out a factor		
	$\Rightarrow x^2(x+2) - 3x - 11 = 0$	of x^2 from $x^3 + 2x^2$, or x from $x^3 + 2x$ (slip).	M1	
	$\Rightarrow x^2(x+2) = 3x+11$			
	$\Rightarrow \qquad x^2 = \frac{3x+11}{x+2}$			
	$\Rightarrow \qquad x = \sqrt{\left(\frac{3x+11}{x+2}\right)}$	then rearranges to give the quoted result on the question paper.	A1	AG
	V (x + 2)	result on the question paper.		(2
(b)	Iterative formula: $x_{n+1} = \sqrt{\left(\frac{3x_n + 11}{x_n + 2}\right)}$, $x_1 = 0$			
	(3(0) + 11)	An attempt to substitute $x_1 = 0$ into the iterative formula.		
	$x_2 = \sqrt{\left(\frac{3(0) + 11}{(0) + 2}\right)}$	Can be implied by $x_2 = \sqrt{5.5}$ or 2.35 or awrt 2.345	M1	
	$x_2 = 2.34520788$	Both $x_2 = \text{awrt } 2.345$	A1	
	$x_3 = 2.037324945$ $x_4 = 2.058748112$	and $x_3 = \text{awrt } 2.037$ $x_4 = \text{awrt } 2.059$	A1	
,	Let $f(y) = y^3 + 2y^2 - 3y - 11 = 0$			(3

(a)	$x^{2}(3-x)-1=0$ o.e. (e.g. $x^{2}(-x+3)=1$)	M1		
	$x = \sqrt{\frac{1}{3 - x}} \tag{*}$	A1 (cso)	(2)	
	Note(♣), answer is given: need to see appropriate working and A1 is cso			
	[Reverse process: Squaring and non-fractional equation M1, form $f(x)$ A1]			
(b)	$x_2 = 0.6455$, $x_3 = 0.6517$, $x_4 = 0.6526$ 1 st B1 is for one correct, 2 nd B1 for other two correct	B1; B1	(2)	
	1 st B1 is for one correct, 2 nd B1 for other two correct			
	If all three are to greater accuracy, award B0 B1			

9.

(a)	$f(1.4) = -0.568 \dots < 0$		
,	$f(1.45) = 0.245 \dots > 0$	M1	
Char	nge of sign (and continuity) $\Rightarrow \alpha \in (1.4, 1.4)$	5) A1	(2)
(b)	$3x^3 = 2x + 6$		
	$x^3 = \frac{2x}{3} + 2$		
	$x^2 = \frac{2}{3} + \frac{2}{x}$	M1 A1	
	$x = \sqrt{\left(\frac{2}{x} + \frac{2}{3}\right)} *$	cso A1	(3)
(c)	$x_1 = 1.4371$	В1	
	$x_2 = 1.4347$	B1	
	$x_3 = 1.4355$	В1	(3)

(a) $x^3 + 3x^2 + 4x - 12 = 0 \Rightarrow x^3 + 3x^2 = 12 - 4x$	
$\Rightarrow x^2(x+3) = 12-4x$	M1
$\Rightarrow x^2 = \frac{12 - 4x}{(x+3)} \Rightarrow x = \sqrt{\frac{4(3-x)}{(x+3)}}$	dM1A1*
	(:
(b) $x_1 = 1.41$, $awrt x_2 = 1.20$ $x_3 = 1.31$	M1A1,A1
	(3