Internal Resistance of Cells Answers WJEC Physics A Level

1.

(a)		'per unit charge' [or 'per coulomb'] used correctly at least once. (1) V = energy delivered [per unit charge] to [external] circuit (1) E = energy supplied [per unit charge] from chemical energy of cell (1) Ir = energy wasted / lost / dissipated [per coulomb] in the internal	4
<i>(b)</i>	(i)	resistance (1) or $ \begin{array}{c c} \text{[with appropriate } \\ 4.0 \ \Omega \\ \end{array} $	1
	(ii)	[or equivalent] $R_{\text{Total}} = 4.8 \Omega \text{ [or by impl.] (1)}$	
		I = 1.25 A (1) [Accept 1.3 A] no e.c.f.	2
	(iii)	P.d. across 4 Ω resistor = 5.0 V [e.c.f. $4.0 \times (b)(i)$ ans]	1
(c)		5.7V and $R_{\text{tot}} = 5.0\Omega$ (with) or 4.5V and $R_{\text{tot}} = 4.6\Omega$ (without cell)(1) With run-down cell: $I = 1.14 \text{ A}$ (1)	
		Without run-down cell: $I = 0.98 \text{ A}$ (1) Conclusion: better not to remove (e.c.f.): strategy + conclusion (1)	4 [12]

uestion		Marking details	Marks Available
(a)		The electrical (potential) energy transferred [or work done] per coulomb / unit charge passing through the cell [Underlined (1); italic (1)]	2
(b)		Voltmeter shown in parallel with cell [outside the dotted line – accept inside the line if outside the cell/i.r combination] [Accept equivalent, e.g. connected in parallel with resistor]	1
(c)		All points correctly plotted (2) [-1 per mistake, min 0] Line correctly drawn [with extrapolation just to V axis] (1)	3
(d)	(i)	[e.m.f. =] 1.6 V	1
	(ii)	gradient attempted [or by impl.](1); $r = 0.33 \Omega / 0.3 \Omega / {}^{1}/{}_{3}\Omega$ (1)	2
			[10]

Question			Marking details	
14.0	(a)		V- energy (per coulomb) used in [external] resistor / circuit. (1) E- energy (per coulomb) transferred / supplied by source / in the whole circuit (1) Ir- energy (per coulomb) wasted / lost in source / cell / internal resistance (1) Use of 'per coulomb / unit charge' once. (1)	[4]
	(b)	(i)	$4[\Omega]$	[1]
		(ii) (iii)	Gradient attempted e.g. $60/10$ (1) (or use of equation ecf from (b) (i)) emf = 6 [V] (1) $1/I = 4$ [A ⁻¹] or by implication (1) $R = 20$ [Ω] (1)	[2]
			Use of I^2R i.e. $(0.25)^2 \times 20$ (ecf) (1) or correct substitution into both $V = IR$ and $P = IV$ or V^2/R $P = 1.25[W]$ (1)	[4]
	(c)	(i) (ii) (iii)	emf = $12.0 [V]$ (ecf) and $r = 8.0 [\Omega]$ (ecf) $R = 52.0 [\Omega]$ (ecf) y intercept $(r \rightarrow 8.0 \Omega)$ (ecf) (1)	[1] [1]
		()	Precise gradient e.g. through (5,52) (ecf) (1)	[2]
			Question 7 Total	[15]

Questio	on	Marking details	Marks Available
(a)	(i)	V is the terminal p.d. – or clear explanation in energy terms: energy per coulomb delivered to external circuit / [NB "per coulomb" / "per unit charge" required on one of (i) and (ii) if energy	
	(ii)	explanation given] P.D. across the internal resistance [accept lost volts – "bod"] / energy	1
	()	per coulomb lost / dissipated in the internal resistance / cell	1
<i>(b)</i>	(i)	2.4 V	1
	(ii)	0.4Ω [allow e.c.f. from (b)(i)]	1
	(iii)	e.g. "Drains" the cell quickly, Cell gets hot	1
(c)		Correct use of $I = \frac{E}{R_{\text{Tot}}}$	
		I = 1.0 A	2
(d)		Trial and error acceptable: Use of $1 \times, 2 \times, 3 \times \dots$ (1); corresponding total resistance (1); use of $\frac{V}{R}$ (1) leading to 5 cells (1)	
		Nice answer: Subst in $I = \frac{E}{R+r}$: $3.0 = \frac{2.4n}{2.0+0.4n}$ [ecf on $n \times 2$](1)	
		Re-arrangement: $6.0 + 1.2n = 2.4n \rightarrow n = 5$	
		Marking points with analytical answer: $n \times 2.4$ (1)	
		Use of total resistance = $2.0 + 0.4 n (1)$	
		Application of $I = \frac{V}{R}(1)$; $n = 5(1)$	4
			-
			[11]

uestion	3	Marking details	Marks Available
(a)	(i)	12 Joules per coulomb (1)	
		Supplied from cell / source / battery / chemical to electrical (1)	2
	(ii)	Energy lost in the resistance of cell	1
(b)		$\left\{ \frac{3.6(1)}{120} \right\} = 0.03 [\Omega] (1)$	2
(c)		$I = \frac{12}{0.03} = 400 [A]$ ecf from (b)	1
(d)	(i)	$Q = 3 \times [(16 \times 60^2) \text{ or } 57 600 (1)]$	
		= 172800 [C] (1)	2
	(ii)	$t = \frac{172,800}{120}$ = 1440 seconds / 24 mins UNIT mark	1
		Allow ecf from (d) (i)	
		Question 3 Total	[9]

estion	Marking details	Available
(a)	[Electrical] energy [or work done] transferred to whole of circuit [or through cell] (1) per coulomb [or unit charge] (1)	[2]
(b)	Sensible scale and axes labelled with units (1) All points correct $\pm \frac{1}{2}$ small square division (1) Line of best fit (1) (no requirement $\rightarrow y$ axis)	[3]
(c)	i) $E = 1.48 \text{ [V] } (\pm 0.01 \text{ V}) \text{ ecf from graph}$	[1]
(i	$E = 1.48 [V] (\pm 0.01 V)$ ecf from graph Gradient attempted or $r = \frac{E - V}{I}$ (by implication) (1) $r = 0.83 [\Omega]$ (1) ecf from graph	[2]
(d)	$I = \frac{E}{R+r} \left\{ \frac{1.48}{6+0.83} \right\} $ (1) (ecf on <i>E</i> and <i>r</i>) $I = 0.22 \text{A}$ (1) $t = 20 \times 60 [1200\text{s}] $ (1) $Q = 0.22 (\text{ecf}) \times 1200 (\text{ecf}) = 264 [\text{C}] $ (1)	[4]
	Question 3 Total	[12]

Question		Marking details	iviarks Available
(a)	(i)	Diagram A: Current through X less than current through Y (or vice-versa) pd across X same as than pd across Y [Both statements correct for 1 mark]	[1]
	(ii)	Diagram B: Current through X same as current through Y pd across X greater than pd across Y [Both statements correct for 1 mark]	[1]
(b)	(i)	Resistance has decreased by factor 1.5 (or reduced to 2/3 original value) or other correct quantitative comparison. Do not accept reduced by 4Ω (1) Therefore current increases by same factor (or × 1.5) etc. (1) Accept answers based on calculation: V across $12.0\Omega = 2.4$ [V] (1) I through $8.0\Omega = \frac{2.4}{8.0}$ (= 0.3 A) (1)	[2]
	(ii)	Current = $0.5[A]$ (1) Total resistance = $10.8[\Omega]$ (1) 0.5×10.8 seen (1)	[3]
		pd across parallel combination = $0.2 \times 12 = 2.4$ [V] (1) pd across $6.0 \Omega = (0.2 + 0.3) \times 6 = 3.0$ [V] (1) Total pd = $2.4 + 3.0$ (1) = $[5.4 \text{ V}]$	
	(iii)	Some voltage (accept energy) is lost/ given out as heat (1) in the internal resistance of the cell (1)	[2]
	(iv)	Substitution into $E = V + Ir$ (e.g. $r = \frac{6 - 5.4}{0.5}$) (1) $r = 1.2 [\Omega]$ (1) deduct 1 mark for incorrect sign	[2]
		Question 5 Total	[11]