Chemistry Calculations

Table 1 shows the mass numbers and percentage abundances of the
isotopes of gallium.

Table 1

Mass number	Percentage abundance (%)
69	60
71	40

Calculate the relative atomic mass (A_r) of gallium.

Give your answer to 1 decimal place.	[2 marks]	
Relative atomic mass (1 decimal place) =		

2.		
	This question is about the extraction of metals.	bo
	Element R is extracted from its oxide by reduction with hydrogen.	
	The equation for the reaction is:	
	$3H_2 + RO_3 \rightarrow R + 3H_2O$	
	The sum of the relative formula masses (M_r) of the reactants (3 H ₂ + RO_3) is 150	
	Calculate the relative atomic mass (A_r) of R .	
	Relative atomic masses (A_r) : $H = 1$ $O = 16$ [2 marks]	
	•	
	Relative atomic mass (A _r) of R =	
1	Identify also and B	
I	Identify element R.	
	You should use:	
	your answer to question 03.1 the periodic table.	

Identity of R =

[1 mark]

3.				
Carbon is used to extract tin	(Sn) from ti	n oxide (Sn	O ₂).	
The equation for the reaction	ı is:			
	$SnO_2 + C$	S → Sn +	CO ₂	
Calculate the percentage ato	om economy	/ for extract	ing tin in this read	ction.
Relative atomic masses (A _r):	C = 12	O = 16	Sn = 119	[3 marks]

Percentage atom economy = ______%

4.	
Iron chloride is produced by heating iron in chlorine gas.	
The equation for the reaction is:	
$2\text{Fe} \ + \ 3\text{Cl}_2 \ \rightarrow \ 2\text{FeCl}_3$	
Calculate the volume of chlorine needed to react with 14 g of iro	on.
You should calculate:	
 the number of moles of iron used 	
the number of moles of chlorine that react with 14 g of iron	
the volume of chlorine needed.	
Relative atomic mass (A_r) : Fe = 56	
The volume of 1 mole of gas = 24 dm ³	[3 marks

Volume of chlorine = _____ dm³

5.

Ethanedioic acid is a solid at room temperature.	
Calculate the mass of ethanedioic acid ($H_2C_2O_4$) needed to make 250 cm 3 solution with concentration 0.0480 mol/dm 3	of a
Relative formula mass (M_r): $H_2C_2O_4 = 90$	[2 marks]
Mass =	g
The student found that 25.0 cm³ of the sodium hydroxide solution was neut 15.00 cm³ of the 0.0480 mol/dm³ ethanedioic acid solution.	tralised by
The equation for the reaction is:	
$H_2C_2O_4 + 2NaOH \rightarrow Na_2C_2O_4 + 2H_2O$	
Calculate the concentration of the sodium hydroxide solution in mol/dm³	[3 marks]

WWW.LondonMathsTutors.co.uk

6.

Ethanol and butanol can be used as fuels for cars.

A car needs an average of 1.95 kJ of energy to travel 1 m

Ethanol has an energy content of 1300 kilojoules per mole (kJ/mol).

Calculate the number of moles of ethanol needed by the car to travel 200 km

[3 marks]