Functions Past Paper Answers GCSE Edexcel - Calculator

1.

stion	Answer	Mark	Mark scheme	Additional guidance
(a)	1.56	B1	1.56 to 1.563	
(b)	3.63	M1	for a complete method to find $fg(34)$ eg 4 sin $65(=3.625)$ or $fg(x)$ eg 4 sin $(2x-3)$	
		A1	for answer in the range 3.6 to 3.63	If an answer in the range is seen in working and then incorrectly rounded award full marks.
(c)	Statement	C1	for statement eg positive and negative square root required. Acceptable examples	and meeticetly rounded award run marks.
			The other answer is -9	
			The quadratic should have 2 solutions.	
			Not acceptable examples He has not expanded the brackets. He needed to $(x+4)$ twice as there is a squared sign. $(x+4)^2$ is 16 not 25. Didn't expand the bracket.	

2.

(a)	2 25	B1	accept 0.08	
(b)	1 25	M1	$fg(x) = \frac{2}{(4x^3)^2}$ oe or $g(1) = 4$ or $\frac{2}{(4x1^3)^2}$ oe	
	8	A1	oe (44)	All powers and products must be
				evaluated

3.

7, -1	P1	for strategy to use $g(3) = 20$, e.g. $3a + b = 20$
	P1	for $g(1) = a + b$
	P1	for a process to find inverse of f. e.g. $f^{-1}(x) = \frac{x-3}{5}$ or $f^{-1}(33) = 6$
	P1	for using $f^{-1}(33) = g(1)$ to find an equation e.g. $\frac{33-3}{5} = a+b$
	A 1	for $a = 7$, $b = -1$

4.

(a)	18	B1	cao
(b)	5(x-1)	M1 A1	for method to find inverse function for $5(x-1)$ or $5x-5$
(c)	9x - 48 shown	M1 A1	for method to find composite function for working leading to $9x - 48$

5.

$3x^2 + 10x$	M1	start a chain of reasoning, eg. $3(x+2)^2 - 2(x+2) - 8$
	M1	continue chain by expanding brackets correctly,
	111	eg. $3x^2 + 12x + 12 - 2x - 4 - 8$
	A1	for $3x^2 + 10x$ ($a = 3, b = 10$)

6.

(a)	$\frac{x+1}{4}$	M1 start to method eg. $y = 4x - 1$ or $x = \frac{y+1}{4}$
(b)	$\frac{13}{16}$	A1 oe P1 for start to process eg. $f(4k) = 16k - 1$ or $g(2) = \frac{12+1}{4}$ A1

7.

$(x+3)^2 - 3^2$ or $(x+3)^2 - 9$ or $(y+3)^2 - 3^2$ or $(y+3)^2 - 9$			M1	for completing the square
$y+9=(x+3)^2$ or $x+9=(y+3)^2$			M1	
$\sqrt{y+9} = x+3 \text{ or } \sqrt{x+9} = y+3$			M1	
	$-3+\sqrt{x+9}$	4	A1	oe M3A0 for $-3 + \sqrt{y+9}$ and for $-3 \pm \sqrt{x+9}$

8.

		J-1		4 4 4	
(a)		-11	1	B1	
(b)		0.5 oe	1	B1	
(c)	$g(-1.5) = 1 \div (1 - 2 \times -1.5) (=0.25)$ or			M1	g(-1.5) must be the correct
	$f_0(x) = 4 - 3 \times \left(\frac{1}{x}\right)$ or				calculation alone.
	$fg(x) = 4 - 3 \times \left(\frac{1}{1 - 2x}\right) \text{ oe}$				
		3.25 oe	2	A1	

9.

(a)	$y = \frac{\sqrt{x^2 + k^2}}{x}, x^2 y^2 = x^2 + k^2 x^2 (y^2 - 1) = k^2$		3	M1	for squaring and rearranging correctly to the form $x^2(y^2-1) = k^2$
	$y = \frac{\sqrt{x^2 + k^2}}{x}, x^2 y^2 = x^2 + k^2 x^2 (y^2 - 1) = k^2$ $\frac{k}{\sqrt{p^2 - 1}} = k$			M1	(dep) for " $f^{-1}(p)$ " = k
		$\sqrt{2}$		A1	
	Alternative method $p = f(k)$			M1	
	$p = \frac{\sqrt{k^2 + k^2}}{k}$			M1	
		$\sqrt{2}$		A1	
(b)	$(gf(a) =) \left(\frac{\sqrt{a^2 + k^2}}{a}\right)^2 \text{ or } (gf(x) =) \left(\frac{\sqrt{x^2 + k^2}}{x}\right)^2$		3	M1	
	$ka^2 - a^2 = k^2$			M1	(dep) for rearranging gf = k and isolating correctly the terms in a^2
		$\frac{k}{\sqrt{k-1}}$		A1	oe eg $\sqrt{\frac{k^2}{k-1}}$

10.

uestion	Working	Answer	Mark	Notes
a		-6.5 oe	1	B1
b	4y = 3x - 5 or $4x = 3y - 5$	$\frac{4x+5}{3}$ oe	2	M1
				A1
c	$\sqrt{19-3}$ oe or f(4) or $\frac{3\sqrt{19-3}-5}{4}$ or $\frac{3\sqrt{19-x}-5}{4}$ oe	1.75 oe	2	M1
	or $\frac{3\sqrt{19-x}-5}{4}$ oe			
				A1 for 1.750e (and no other solution)
d		x > 19	2	B2 for $(x) > 19$ or an equivalent statement in words If not B2 then award B1 for $(x) \ge 19$