Forces

Past Paper Questions AQA Physics GCSE

The thinking distance and braking distance for a car vary with the speed of the car.

01.		
Explain the effect of two other factors on th	e braking distance of a car.	
Do not refer to speed in your answer.		[4 marks]
02.		
Which equation links acceleration (a), mas	ss (m) and resultant force (F).	
Tick (✓) one box.		[1 mark]
resultant force = mass × acceleration		
resultant force = mass × acceleration ²		
resultant force = $\frac{\text{mass}}{\text{acceleration}^2}$		
resultant force = $\frac{\text{mass}}{\text{acceleration}}$		

03.		
The mean braking force on a car is 7200) N.	
The car has a mass of 1600 kg.		
Calculate the deceleration of the car.		[3 marks]
	Deceleration =	m/s ²

Figure 1 shows how the thinking distance and braking distance for a car vary with the speed of the car.

04.

Determine the stopping distance when the car is travelling at 80 km/h.	[2 marks]
Stopping distance =	m

Figure 2 shows part of the braking system for a car.

Figure 2

05.

Which equation links area of a surface (A), the force normal to that surface (F) and pressure (p).

[1 mark]

Tick (✓) one box.

$$p = F \times A$$

$$p = F \times A^2$$

$$p = \frac{F}{A}$$

$$p = \frac{A}{F}$$

06.	
When the brake pedal is pressed, a force of 60 N is applied to the piston.	
The pressure in the brake fluid is 120 000 Pa.	
Calculate the surface area of the piston.	
Give your answer in standard form.	
Give the unit.	orkol
m oj	arks]
Surface area (in standard form) = Unit	

Figure 3 shows a child on a playground toy.

Figure 3

•	١	7	•
ı	,	•	_

The springs have been elastically deformed.	
Explain what is meant by 'elastically deformed'.	[2 marks]

A student investigated the relationship between the force applied to a spring and the extension of the spring.

Figure 4 shows the results.

08.	
Describe a method the student could use to obtain the results given in Figure	re 4.
You should include a risk assessment for one hazard in the investigation.	
Your answer may include a diagram.	[6 marks]

09.

Figure 4 is repeated below.

10.	
Determine the spring constant of the spring.	
Use Figure 4.	marks]
Spring constant =	N/m
The student concluded:	
'The extension of the spring is directly proportional to the force applied to the s	spring.'
Describe how Figure 4 supports the student's conclusion.	! marks]

12.
The student repeated the investigation using a different spring with a spring constant of 13 N/m.
Calculate the elastic potential energy of the spring when the extension of the spring was 20 cm.
Use the Physics Equations Sheet. [3 marks]
[o marko]
Flastic notantial energy =