FORCES AND NEWTON'S LAWS MECHANICS ANSWERS OCR ALEVEL YEAR 1

1.

Ques	tion	Expected Answers	Marks	Additional Guidance
(a)		(Force is 1 N) when a 1 kg mass has an acceleration of 1 m s ²	B1	Not: '1 kg and 1 m <u>s⁻¹</u> ' Allow: (1 N =) <u>1 kg</u> × <u>1 m s⁻²</u>
(b)		The <u>mass</u> of particles increases (at its speed gets closer to the speed of light)	B1	Not: 'weight of particle increases' Not: 'mass changes / different'
(c)	(i)	net force = 120 (N) $a = \frac{120}{900}$ $a = 0.13 \text{ (m s}^2\text{)}$	C1	Note: Bald answer scores 2 marks; answer must be 2 sf or more
	(ii)	The drag force changes with speed / acceleration is not constant	B1	
(d)		$F = 72 \times 1.4 $ (= 100.8 N) / weight = 72 × 9.81 (= 706.32 N) $T = (72 \times 9.81) + (72 \times 1.4)$	C1	Note: Bald 101 (N) or 706 (N) scores 1 mark
		T = 807 (N) or 810 (N)	A 1	Note: Bald answer scores 3 marks Bald 605.52 to at least 2 sf scores 1 mark
		Total	8	

Question		Expected Answers	Marks	Additional Guidance
(a)		$F_H = 20\cos 38 = 15.76 \approx 15.8$ (N)	B1	Allow: 2 sf answers of 16 (N) and 12 (N)
		$F_V = 20\sin 38 = 12.31 \approx 12.3$ (N)	B1	Allow: 1 mark if vertical and horizontal components have been interchanged
(b)	(i)	net force vertically = 0 / weight = upward forces	C1	
		weight = 12.3 + 12.3	C1	Possible ecf from F _V value from (a)
		weight = 24.6 (N) ≈ 25 (N) Or	Α0	
		correct triangle of forces diagram	C1	At least one label needed (e.g: 20, correct angle, etc) – arrows not needed
		correct determination of weight	C1	Maight in the range 22 27 (N)
		weight = 24.6 (N) ≈ 25 (N)	A0	Weight in the range 22 - 27 (N)
	(ii)	$mass = \frac{25}{9.81} = 2.55 \text{ (kg)}$	C1	Note : 2.51 kg if 24.6 N is used
		density = $\frac{2.55}{2.9 \times 10^{-4}}$	C1	
		density = 8.8×10^3 (kg m ⁻³)	A1	Note : 'weight/volume' scores zero Note : Answer is 8.7 × 10 ³ if 2.51 kg is used
				Allow: 2 marks if g = 10 used and 25 N \rightarrow 2.5 kg $\therefore \rho$ = 8620 (kg m ⁻³)
				Note: Bald 8.7× 10 ³ or 8.8 × 10 ³ scores 3 marks Allow: 1 mark if 20 N is used instead of 25 N – this gives 7030 (kg m ³)
		Total	7	

Quest	ion	Expected Answers	Marks	Additional Guidance
(a)		The mass (of the electron) increases as its speed approaches \underline{c} / \underline{speed} of light / 3×10^8 m s ⁻¹	M1 A1	Not: mass 'changes' / 'electron becomes heavier'
(b)	(i)	A line with correct arrow in the <i>y</i> direction has length of 14 to 16 'small squares' A line with correct arrow in the <i>x</i> direction has length of 24 to 26 'small squares'	B1 B1	Note: If correct arrows are not shown, then maximum mark is 1
	(ii)	component = $(8.0\cos 31 =)6.86$ (m s ⁻¹) or 6.9 (m s ⁻¹)	B1	Allow: 6.85 as BOD
(c)	(i)	Correct vector triangle drawn $2.14 \text{ (kN)} \qquad \qquad 1.50 \text{ (kN)}$ $90^{0} \qquad \qquad 1.50^{2}$ (resultant force) ² = 2.14 ² + 1.50 ²	B1	Note: Expect at least one 'label' on the sketch, eg: 2.14, 1.5, 90° The 'orientation' of the triangle is not important The directions of all three arrows are required
		resultant force = 2.61 (kN)	A1	Allow: 2 sf answer of 2.6 (kN) Allow a scale drawing; 2 marks if answer is within ± 0.1 kN and 1 mark if ± 0.2 kN Alternative for the C1 A1 marks: 1.50cos(55) or 2.14cos(35) resultant force = 1.50cos(55) + 2.14cos(35) resultant force = 2.61 (kN) A1
	(ii)	2.6(1) (kN)	B1	Possible ecf
		(Constant velocity implies) zero net force / zero acceleration	B1	Not : 'resultant force = drag' since the first B1 assumes this
		Total	10	

a	work (done) = force × distance <u>moved</u> in the direction of force	B1	Allow: work = force × displacement in direction of force Not: work (done) = energy transfer
b(i)	(Net /total /resultant force is) zero	B1	
	The <u>acceleration</u> is zero	В1	Not 'a = 0'
b(ii)	$9.0 \times 10^3 \cos 83^\circ \text{ or } 9.0 \times 10^3 \sin 7^\circ$	C1	
	$1.1 \times 10^3 (N)$	A1	Not '9.0 × $10^3 \cos 7^\circ$ '
b(iii)	work done per second = 300×18		
	work done per second = $5400 \text{ (J s}^{-1}\text{)}$	В1	
b(iv)	(total force down slope =) 1100 + 300 (N)	C1	Allow: 1400 (N)
	(power =) 1400×18	C1	
	(power =) 2.52×10^4 (W) or 2.5×10^4 (W)	A1	Possible ecf from (b)(ii)
	or		
	rate of work done		
	against weight = $1.1 \times 10^3 \times 18$ (= 19800 W)	C1	Allow : $Fx\cos\theta = 9.0 \times 10^3 \times 18 \times \cos 83^\circ$
	power = 19800+ 5400	C1	D III CC AVCD LAVCD
	power = 2.52×10^4 (W) or 2.5×10^4 (W)	A1	Possible ecf from (b)(ii) and (b)(iii)
	Total	9	

a	incorrect	M1	In question 5, use tick or cross on Scoris to show if the mark is awarded
	Mass (of the particle) increases (as it approaches speed of light)	A1	Not: mass <i>changes</i>
b	correct	M1	
	KE is changed into (G)PE or (G)PE is changed into KE or change in KE = change in (G)PE (AW)	A1	Note: This mark is for stating the transfer of energy between kinetic and (gravitational) potential
c	incorrect Weight is equal to drag / air resistance / friction (and not acceleration of free fall)	M1 A1	Allow alternative response: incorrect Acceleration and weight are not the same quantities (AW) A1
d	incorrect The technique is trilateration	M1 A1	Note 1 mark if 'trilateration' is misspelled but candidate has mentioned that the statement is incorrect
	The term trilateration to be included and spelled correctly to gain the A1 mark		
	Total	8	

Q	uestion	Answers		Guidance
5	(a)	mass = $\frac{590}{9.8(1)}$ (= 60 kg)	B1	Allow: weight = $60 \times 9.8(1)$ Allow: $60 \times 9.8(1) = 588$ (N) or $60 \times 9.8(1) = 590$ (N)
	(b)	net force = 60 × 0.50 (= 30 N)		
		R = 590 + 30	C1	
		R = 620 (N)	A1	Allow : 1 mark for '590 – 30 = 560 (N)'
	(c)	resultant force = 0 / ' a = 0 and F = ma = 0'	B1	Not: Acceleration = 0 or 'forces are balanced'
	(d)	weight > R (for deceleration) / R = 590 $-$ 60 a / R = mg - ma Hence R decreases	M1 A1	Allow: W or mg for 'weight'
		Total	6	

uestion	Answer	Marks	Guidance	
(a)	a = 3600/1200 a = 3.0 (m s ⁻²)	B1	Allow 1 sf answer (Ignore sign)	
(b)	$v^{2} = u^{2} + 2as$ $0 = 18^{2} + (2 \times -3.0 \times s)$ / $s = \frac{18^{2}}{6.0}$ s = 54 (m)	C1 C1 A1	Possible ecf Allow ' $v^2 = 2as$, $18^2 = 2 \times 3.0 \times s'$ Allow other approaches, examples: $t = 6$ (s) $s = (18 \times 6.0) + \frac{1}{2} \times (-3.0) \times 6.0^2$ C1 $s = 54$ (m) Or $\frac{1}{2}mv^2 = Fs$ $\frac{1}{2} \times 1200 \times 18^2 = 3600 \times s$ C1 $\frac{1}{2} \times 54$ (m) A1	
(c)	(The distance is) greater There is a <u>component</u> of the weight of the car acting down the slope / <u>component</u> of weight against the resistive force / reference to $W \sin \theta$ (AW) Net force is less / reference to $3600 - W \sin \theta$ (magnitude of) deceleration is smaller	B1 B1	Allow the following for the last two B1 marks: The same force has to do more work Work done is the sum of initial kinetic energy and chang in GPE (due to vertical downward movement)	
(d)	Reference to radio waves or microwaves (transmitted from satellites) There is a 'delay time' of signal from satellite to GPS device / car Distance (between satellite and GPS device / car) calculated using 'delay time × c' Trilateration / intersecting shells / circles / spheres (used to locate position of car)	B1 B1 B1 B1	Use ticks on Scoris to show where the marks are awarded Allow: 'delay time' of signal between satellite and GPS device / car (Not from GPS device / car to satellite) **Trilateration / shell(s) / circle(s) / sphere(s) must be spelled correctly to gain the mark. Note: Allow full range of marks for other sensible alternative approaches	

Question		Answer		Guidance	
(a)		Drag increases with speed (ORA) / drag ∝ speed²	B1		
(b)		Galileo dropped different mass balls / rolled different mass balls (down a ramp)	B1	Allow object / trolley instead of ball	
		Balls hit the ground / reached the bottom (of ramp) at the same time	B1		
		(Galileo -) All objects fall with the same acceleration and (Aristotle -) Heavy / massive objects fall faster / quicker (than light objects)	B1		
(c)	(i)	(The two forces are weight and drag) weight = drag	B1	Not 'gravity' for weight Allow: weight = drag + upthrust	
	(ii)	When the parachute is opened, drag increases / drag is greater than the weight	B1		
		Drag decreases as the speed decreases / net force decreases	B1		
		The (magnitude of the) deceleration decreases (between 50 m s ⁻¹ and 4 m s ⁻¹)	B1		
		(At 4 m s ⁻¹) deceleration or acceleration = 0	B1		
		Total	9		

Quest	ion	Answer	Marks	Guidance	
(a)		work done = force \times distance \underline{moved} in the direction of force		Allow: work done = force × displacement in direction of force	
(b)	(i)	mass = 700/9.81 or mass = 71.4 (kg) kinetic energy = $\frac{1}{2} \times 71.4 \times 15^2$ kinetic energy = 8.0×10^3 (J)	C1 A1	Note: Answer to 3 sf is 8.03×10^3 (J) Note: $\frac{1}{2} \times 700 \times 15^2 = 7.9 \times 10^{4}$ scores zero Allow: 1 sf answer	
	(ii)	GPE = mgh			
		700 × 32 / 2.24 × 10 ⁴ (J)	C1		
		work done = $2.24 \times 10^4 - 8.03 \times 10^3$	C1	Possible ecf	
		resistive force = $\frac{1.44 \times 10^4}{120}$ resistive force = 120 (N)	A1	Note : Dividing the work done by 32 (m) gives 450 (N). This answer scores 2 marks.	
		Tota	I 6		