Energy

Past Paper Questions AQA Physics GCSE

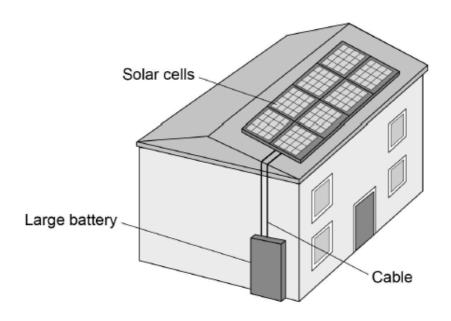

01.
During one year, $1.25 \times 10^{18} \mathrm{J}$ of energy was transferred from the National Grid.
number of seconds in 1 year = 3.16×10^7
Calculate the mean energy transferred from the National Grid each second.
Give your answer to 3 significant figures. [2 marks]
Energy each second (3 significant figures) = J

Figure 5 shows a house with a solar power system.

The solar cells generate electricity.

When the electricity generated by the solar cells is not needed, the energy is stored in a large battery.

Figure 5

02.

The charge flow through the cable between the solar cells and the battery in 24 hours was 27 000 coulombs.

Calculate the mean current in the cable.		[4 marks]
	Mean current =	Α

03.	
At one time, the total power input to the solar cells was 7.8 kW.	
The efficiency of the solar cells was 0.15	
Calculate the useful power output of the solar cells. [3 ma	ırks]
Useful power output =	_w
04.	
It is unlikely that all of the electricity that the UK needs can be generated by solar power systems.	
Explain why. [2 marks]	

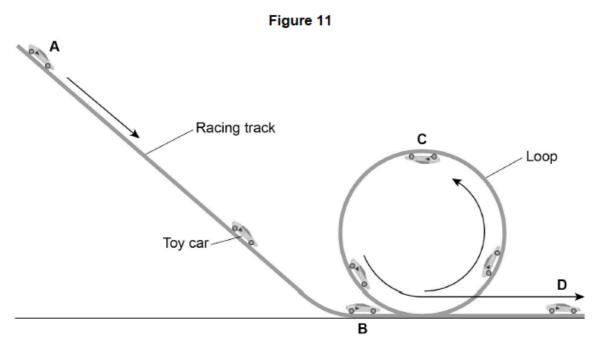
Figure 11 shows a toy car in different positions on a racing track.

Racing track

C

Loop

Toy car


05.

The toy car and racing track can be modelled as a closed system.		
Why can the toy car and racing track be considered 'a closed system'?	[1 mark]	
Tick (✓) one box.	[1 mark]	
The racing track and the car both have gravitational potential energy.		
The racing track and the car are always in contact with each other.		
The total energy of the racing track and the car is constant.		

Ultraviolet is a type of electromagnetic wave.

06.
The car is released from rest at position ${\bf A}$ and accelerates due to gravity down the track to position ${\bf B}$.
mass of toy car = 0.040 kg
vertical height between position A and position B = 90 cm
gravitational field strength = 9.8 N/kg
Calculate the maximum possible speed of the toy car when it reaches position B. [5 marks]
Consider
Speed =m/s

Figure 11 is repeated below.

07.

At position ${\bf C}$ the car's gravitational potential energy is 0.20 J greater than at position ${\bf B}$.

How much kinetic energy does the car need at position ${\bf B}$ to complete the loop of the track?

Give a reason for your answer.

Tick (✓) one box.			[2 marks]
Less than 0.20 J			
Exactly 0.20 J			
More than 0.20 J			
Reason			