Electricity Past Paper Answers WJEC Eduqas Physics A Level

1.

(a)	(i)	Electrons transferred from [polythene] rod to [metal cap] [or equiv] [Not just -ve charge]	1
	(ii)	+ve (1) because electrons [accept: negative charges] transferred from duster to rod (1).	2
(b)	(i)	1.6×10^{-15} (1)	2
		[Division by $e \checkmark$, answer \checkmark]	
	(ii)	$I = \frac{Q}{t}$ or rearranged or $\frac{64 \times 10^{-9}}{2 \times 10^{-6}}$ (1) [or by impl.]	
		t = 32 ms (1)	2
			[7]

(a)		$V \propto I$ [or equiv. or in words] (1) provided that temperature remains constant (1)	2
(b)	(i)	Parallel sect: $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ or $\frac{1}{80} + \frac{1}{80}$ or $R = \frac{R_1 R_2}{R_1 + R_2}$ or $\frac{80 \times 80}{80 + 80}$ (1)	
		[or equiv or by impl.]	
		$R_{\text{parallel}} = 40 \Omega (1)$ Total circuit resistance = 240 $\Omega (1)$ [no e.c.f.]	2
		Total circuit resistance = 240 s2 (1) [no c.c.i.]	3
	(ii)	I. $I = \frac{V}{R}$ or $\frac{9}{240 \text{e.c.f.}} (1) = 37.5 \text{ mA} (1)$	2
		[Or potential divider approach with 7.5 V and 200 Ω] II. 18.75 mA e.c.f.	1
	(iii)	Use of $P = I^2 R$ or $\frac{V^2}{R}$ or $IV(1)$	
		P dissipated in $\mathbf{A} = (37.5 \times 10^{-3})^2 \times 200 = 0.28 \text{ W (1) e.c.f.}$	
		P dissipated in $\mathbf{C} = (18.75 \times 10^{-3})^2 \times 80 = 0.028 \text{ W (1) e.c.f.}$	
		$P_{\rm A}$: $P_{\rm C}$ = 10:1 :. A appears brighter. (1) [e.c.f. on a power attempt] [Bulb B instead of bulb A used -1]	4 [12]

(a)	Resistance of wire = 40Ω	1
(b)	Temperature remains constant [or temperature change is (too) small (to affect resistance noticeably)] (1)	
	Constant gradient → constant resistance [both parts needed] (1)	2
	[Accept: Voltage ∝ current and Ohm's Law obeyed] [Accept other well argued answer, e.g. wire could be constantan,	
	which has negligible temperature variation of resistance, so graph	
	doesn't tell us much.]	
(c)	$\rho = \frac{RA}{l} \text{ [or by impl.](1) [i.e rearrangement of } R = \frac{\rho l}{A} \text{]}$ $\rho = \frac{40 \text{e.c.f.} \times \pi \left(1.0 \times 10^{-4}\right)^2}{2.5} \text{ [Correct expression for area } \rightarrow (1)]$	
	4.0	
	$\rho = 5.0 \times 10^{-7} \Omega \mathrm{m}(1) ((\mathbf{unit}))$	3
(d)	Graph: Straight line graph through origin with lower gradient than	
	original (1). With correct gradient [i.e. $^{1}/_{3}$ original] (1)	2
		[8]

		3 11	
(a)		Flow of charge [acceptcharge/ions]	1
Mr. Servi		$[\Delta]Q$	
		or $\frac{[\Delta]Q}{[\Delta]t}$, if the symbols defined	
(b)	(i)	Sum of areas of triangle and rectangle areas attempted [or reasonable	
4.51		attempt at area of trapezium] (1)	2
		Q = 3.0 C ((unit))(1)	2
	104401	3.0(e.c.f.)	
	(ii)	No. of electrons = $\frac{3.0(\text{e.c.f.})}{1.6 \times 10^{-19}(1)} = 1.9 \times 10^{-19} (1) [1^{\text{st}} \text{ mark div by } e]$	2
	(iii)	I = 1.2(0) A (from graph) (1);	
		$v = \frac{I}{I}$ [manipulation shown – could be in following substitution –	
		nAe [mainputation shown – could be in following substitution –	
		or by impl.](e.c.f. on I](1)	933
		= 3.75×10^{-5} m s ⁻¹ [accept 3.8×10^{-5} m s ⁻¹] (e.c.f. on I) (1)	3
			[8]

(a)	3	Free [or equiv, e.g. conducting / m collide / interact / hindered [by] (1 conductor / lattice ["particles" b.o.) with atoms / ions of metal	3
(b)	(i)	 I. [0 - 2 V]: Resistance constant II. [2 - 8 V]: Resistance increases 		1
	(ii)	Either $R_{\text{bulb}} = \frac{6.0}{0.8(1)} = 7.5 \Omega (1)$ Total resistance = 5 \Omega (1) [ecf] $\left[\text{Correct use of } \frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \right]$ $I = 1.2 \text{ A} (1) [\text{ecf on } R]$	Or I through $15\Omega = \frac{6.0}{15}(1) = 0.4 \text{ A}(1)$ I through bulb = 0.8 A (1) Total current = 1.2 A (1)	4
	(iii)	Subst in $P = I^2 R$ [ecf on R and I] or $P = IV$ [ecf on I only] (1) $P = 7.2$ W (1)	\mathbf{r} in $P = \frac{r}{R}$ [ecf on R only] or	2 [11]

(a)	(i)	Wire with rule positioned (1) and <u>l</u> croc clip (1)	abelled moving pointer / jockey /	
		Either correctly positioned ohm-m correctly position ammeter and vol		3
	(ii)	[Different] length[s] of wire (1) Either measure V and I or measure	re / read R (1)	2
	(iii)	Diameter of wire [not radius or csa micrometer / vernier calliper	by accept "thickness"] with	1
	(iv)	cross-sectional area fro πr^2 or $\pi(d/2)$ graph of R against I [or mean value ρ = gradient \times [cs]a [or mean value [NB $R = V/I$ given here can be used [NB Finding R for a measured leng calculated \rightarrow 1 only]	e of R/l] (1) e of $R/l \times csa$] (1) d to credit 2^{nd} mark of (ii)]	3
(b)	(i)	$R \propto l(1)$:: R increases as strain ga $R \propto {}^{1}/A(1)$:: R increases as the st [or $R = \frac{\rho l}{A}$ or $\rho = \frac{RA}{l}(1)$, A increases ρ doesn't change /constant (1) so r	rain gauge gets thinner (1) uses & l decreases (1)	4
	(::)	Colonia III and Sales and Market	(a) (b) (c) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	1 1
	(ii)	[csa =] $0.2 \times 10^{-3} \times 0.0012 \times 10^{-3}$ $\rho = 4.9 \times 10^{-7} \Omega \text{ m ((unit)) (1) [ec}$ [ecf on powers of 10 in both A and	f from csa calculation]	2
	(iii)	Either $1.6 = \frac{650}{650 + R} \times 6 (1)$ Manipulation (1); $R = 1788 \Omega$ (1)	Or $I = \frac{1.6}{650} (=2.46 \times 10^{-3} \text{ A}) (1)$ $R = \frac{(6-1.6)(1)}{2.46 \times 10^{-3}} = 1788 \Omega (1)$	
		(.)	2.46×10	3
				[18]

(a) (i) [For a metallic conductor] the potential difference and current are [directly] proportional/ I α V (1), provided the temperature remains constant / all physical factors remain constant (1) V = IR only no marks (ii) It is constant / stays the same /increases as the temperature increases (b) (i) $A = 1.5(3) \times 10^{-8}$ [m²](1) $R = \frac{\rho l}{A} = \frac{95 \times 10^{-8} \times 3.2}{1.5(3) \times 10^{-8}}$ (1) = 199 [Ω] (1) (ii) $\frac{230^2}{200} = 265$ [W] allow e.c.f. from (b)(i) (iii) $\frac{1}{66.7(1)} = \frac{1}{200} + \frac{1}{R_2}$ (1) $R_2 = 100$ [Ω] (1) (iv) R_2 (1) either reference to $\frac{V^2}{R}$ so lower R / same V across lower R or reference to $l^2 R$ so greater l or reference to $l^2 R$ so greater l or reference to $l^2 R$ so l increased [for constant $l^2 R$] or correct calculation of $l^2 R$ (1) Question 1 total [13]				
$R = \frac{\rho l}{A} = \frac{95 \times 10^{-8} \times 3.2}{1.5(3) \times 10^{-8}} (1) = 199 \ [\Omega] (1)$ (ii) $\frac{230^2}{200} = 265 \ [W] \ \text{allow e.c.f. from (b)(i)}$ (iii) $\frac{1}{66.7(1)} = \frac{1}{200} + \frac{1}{R_2} (1)$ $R_2 = 100 \ [\Omega] (1)$ (iv) $R_2 (1) \ \text{either reference to } \frac{V^2}{R} \text{ so lower } R / \text{ same V across lower R}$ or reference to I^2R so greater I or reference to IV so I increased [for constant IV] or correct calculation of IV so IV increased [for IV] or correct calculation of IV] or correct ca	(a)		[directly] proportional/ I α V (1), provided the temperature remains constant / all physical factors remain constant (1) V = IR only no marks	2 1
(ii) $\frac{230^2}{200} = 265 \text{ [W] allow e.c.f. from (b)(i)}$ (iii) $\frac{1}{66.7(1)} = \frac{1}{200} + \frac{1}{R_2}(1)$ $R_2 = 100 \text{ [}\Omega\text{] (1)}$ (iv) $R_2 (1) \text{ either reference to } \frac{V^2}{R} \text{ so lower } R \text{ / same V across lower R}$ or reference to I^2R so greater I or reference to IV so I increased [for constant V] or correct calculation of $R_2(1)$ (v) $\frac{230}{66.7} = 3.5 \text{ [A] allow e.c.f. from (b)(iii)}$	(b)	(i)		
(iii) $\frac{1}{66.7(1)} = \frac{1}{200} + \frac{1}{R_2}(1)$ $R_2 = 100 [\Omega] (1)$ (iv) $R_2 (1) \text{ either reference to } \frac{V^2}{R} \text{ so lower } R / \text{ same V across lower R}$ or reference to I^2R so greater I or reference to IV so I increased [for constant V] or correct calculation of $R_2(1)$ (v) $\frac{230}{66.7} = 3.5 [A] \text{ allow e.c.f. from (b)(iii)}$		(ii)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3
(iv) $R_{2} = 100 [\Omega] (1)$ $R_{2} = 100 [\Omega] (1)$ $R_{2} (1) \text{either} \text{reference to} \frac{V^{2}}{R} \text{so lower} R / \text{same V across lower R}$ or reference to $I^{2}R$ so greater I or reference to IV so I increased [for constant V] or correct calculation of $R_{2} (1)$ $\frac{230}{66.7} = 3.5 [A] \text{allow e.c.f. from (b)(iii)}$				1
or reference to I^2R so greater I or reference to IV so I increased [for constant V] or correct calculation of $R_2(1)$ $\frac{230}{66.7} = 3.5 \text{ [A] allow e.c.f. from (b)(iii)}$		()	$\frac{1}{66.7(1)} = \frac{1}{200} + \frac{1}{R_2} $ (1)	_
(v) $\frac{230}{66.7} = 3.5$ [A] allow e.c.f. from (b)(iii)		(iv)		3
1		(v)	constant V or correct calculation of $R_2(1)$	2
Question 1 total [13]			$\frac{1}{66.7}$ = 3.5 [A] allow e.c.i. from (b)(iii)	1
			Question 1 total	[13]

(a)	(i)	Diagram to include	
		 Correct electric circuit with ohmmeter or power supply with ammeter + voltmeter with correct symbols and positioning 	
		(1)	
		Method of heating shown (1)	
		 Method of recording temperature shown (1) 	3
	(ii)	Linear [or approximately linear] graph with positive gradient (1) and	
	52 73	positive intercept on R axis (1).	2
(b)	(i)	Conducting / delocalised / free electrons (1) collide (1) with metal	
	2.2	lattice / atoms / ions (1) [not with other free electrons]	3
	(ii)	The greater the temperature the greater the vibrational energy of the lattice / metal ions (1) producing a greater chance [or rate] of	
		collisions/ collisions more often / greater frequency of collisions (1)	
		[not harder] .	2
		Question 2 total	[10]

	1
right (1) leaving A with a net positive charge (1)	3
charges shown on the sides of the sphere which are nearly touching.(1)	2
$[1.6 \times 10^{-19} \times 300 \times 10^{9} =] 4.8 \times 10^{-8} \text{ C UNIT mark}$	1
$I = \frac{4.8 \times 10^{-8}}{20 \times 10^{-12}} (1) = 2.4 \times 10^{3} [A] (1) \text{ allow e.c.f from (b)(i)}$	2
Question 5 Total	[9]
)	Negative charges repelled [by rod] (1) and move from A to B/ to the right (1) leaving A with a net positive charge (1) Diagram with A shown as positive and B as negative (1) and the charges shown on the sides of the sphere which are nearly touching.(1) $[1.6 \times 10^{-19} \times 300 \times 10^{9} =] 4.8 \times 10^{-8} \text{ C UNIT mark}$ $I = \frac{4.8 \times 10^{-8}}{20 \times 10^{-12}} (1) = 2.4 \times 10^{3} \text{ [A] (1) allow e.c.f from (b)(i)}$

(a)	(i) (ii)	Point where entire <u>weight</u> of object acts. Don't accept mass. Tan $\theta = 40/60$ (1); $\theta = 33.7^{\circ}$ (1)	[1] [2]
(b)		$V = 0.6. \times 0.4 \times 0.1$ (1); $M = \rho \times V$ used correctly (1)	[2]
	(ii)	$T \sin \theta$ or equivalent (1) x 1.2 (1) = 9.6 x 9.81 x 1.8 (1) T = 220 [N] (1)	[4]
	(iii)	$F = 220$ (ecf) $\cos 40^{\circ}$ or equivalent (1)	[2]
		F = 169 [N] (1) Accept Pythagoras solution.	[2]
		Question 5 Total	[11]
(a)	(i)	Correct and convincing use of $\rho = \frac{RA}{l}$ (including unit conversion)	[1]
	(ii)	$\left(\frac{2000}{11.2}\right) = 179 \text{ A unit mark}$	[1]
	(iii)	$v = \frac{I}{nAe}$ rearranged (or shown numerically) (1) $n = 6.0 \times 10^{28} \times 3$ (1)	
		$v = 1.55 \times 10^{-5} \text{ [m s}^{-1]} \text{ (ecf on } I \text{ and } n) $ (1)	[3]
(b)	(i)	Same (or equivalent)	[1]
	(ii)	v increased (1) because; A decreased, I,n,e unchanged by implication (1)	[2]
	(iii)	Increased frequency / more collisions between electrons and lattice / atoms / ions or electrons carry greater kinetic energy (1) leading to increased vibrational / kinetic energy of lattice atoms	[2]
		(1)	
		Question 6 Total	[10]