Electricity - Energy TransfersPast Paper Questions AQA Physics GCSE

Figure shows part of the National Grid linking a power station to consumers.

Name the parts of Figure labelled A and B.

[2 marks]

A

B

02.

What is the advantage of transmitting electricity at a very high potential difference?

[1 mark]

Tick (✓) one box.

A high potential difference is safer for consumers.

Less thermal energy is transferred to the surroundings.

The power station generates electricity at a potential difference of 25 000 V.
The energy transferred by the power station in one second is 500 000 000 J.
Calculate the charge flow from the power station in one second.
Use the equation:
$charge flow = \frac{energy}{potential difference}$ [2 marks]
Charge flow in one second =C

03.

The electricity supply to a house has a potential difference of 230 V.

Table shows the current in some appliances in the house.

Table

Appliance	Current in amps
Dishwasher	6.50
DVD player	0.10
Lamp	0.40
TV	0.20

Total power = _____ W

04.	
Calculate the total power of all the appliances in Table	
Use the equation:	
power = potential difference × current	[3 marks]

05.
Each appliance in Table is switched on for 2 hours.
Which appliance will transfer the most energy?
Give a reason for your answer.
ApplianceReason
06. The average energy transferred from the National Grid every second for each person
in the UK is 600 J. There are 32 000 000 seconds in one year.
Calculate the average energy transferred each year from the National Grid for each person in the UK. [2 marks]
Average energy transferred = J

Figure shows an electric car being recharged.

I	Figure /	Charging station
Power cable		
07.		
The charging station applies a direct pote	ntial difference across the battery o	of the car.
What does 'direct potential difference' me	ean?	[1 mark]
08.		
Which equation links energy transferred ((E), power (P) and time (t) ?	[1 mark]
Tick (✓) one box.		
energy transferred = $\frac{\text{power}}{\text{time}}$ energy transferred = $\frac{\text{time}}{\text{power}}$		
energy transferred = power × time		

energy transferred = power² × time

09.
The battery in the electric car can store 162 000 000 J of energy.
The charging station has a power output of 7200 W.
Calculate the time taken to fully recharge the battery from zero. [3 marks]
Time taken =s
10.
Which equation links current (I) , potential difference (V) and resistance (R) ? [1 mark]
Tick (✓) one box.
$I = V \times R$
$I = V^2 \times R$
$R = I \times V$
$V = I \times R$

11.	
The potential difference across the battery is 480 V.	
There is a current of 15 A in the circuit connecting the battery to the motor of the electric car.	
Calculate the resistance of the motor. [3 mar	ks]
	_
12.	
Different charging systems use different electrical currents.	
Charging system A has a current of 13 A.	
Charging system B has a current of 26 A.	
The potential difference of both charging systems is 230 V.	
How does the time taken to recharge a battery using charging system A compare the time taken using charging system B ? [1 m	
Tick (✓) one box.	
Time taken using system A is half the time of system B	
Time taken using system A is the same as system B	
Time taken using system A is double the time of system B	