ENERGY ANSWERS OCR ALEVEL YEAR 1

1.

uestion		Expected Answers	Marks	Additional Guidance
(a)		Energy cannot be created or destroyed; it can only be transferred/transformed into other forms or The (total) energy of a system remains constant or (total) initial energy = (total) final energy (AW)	B1	Allow: 'Energy cannot be created / destroyed / lost'
(b)		Any suitable example of something strained (eg: stretched elastic band)	B1	
(c) ((i)	$E_{p=} mgh \text{ and } E_k = \frac{1}{2} mv^2 \text{(Allow } \Delta h \text{ for } h\text{)}$	B1	Not: E _k = mgh
((ii)	$mgh = \frac{1}{2}mv^2$ $v^2 = 2gh \text{or} v = \sqrt{2gh}$	B1 B1	
(d) ((i)	$m = \rho V$ $m = 1.0 \times 10^{3} \times (1.2 \times 10^{-2} \times 2.0 \times 10^{7})$ mass of water = 2.4 × 10 ⁸ (kg)	C1 C1 A0	Allow any subject for the density equation
((ii)	loss in potential energy = $2.4 \times 10^8 \times 9.81 \times 2.5 \times 10^3$ 30% of GPE = $0.3 \times 5.89 \times 10^{12}$ (=1.77 × 10 ¹²)	C1 C1	Allow 1 mark for '5.89 × 10 ¹² (J)' Allow 2 marks for '1.77 × 10 ¹² (J)'
		power = $\frac{1.77 \times 10^{12}}{900}$ power = $1.9(63) \times 10^{9}$ (W) (≈ 2 GW)	C1 A0	Note : $\frac{5.89 \times 10^{12}}{900}$ (= 6.5 GW) scores 2 marks
(i	iii)	Any correct suitable suggestion; eg: the energy supply is not constant/ cannot capture all the rain water / large area (for collection)	B1	Note: Do not allow reference to 'inefficiency' / 'cost'
		Total	11	

2.

a	kinetic energy = $1/2 \times \text{mass} \times \text{speed}^2$	Bl	Allow KE = $\frac{1}{2}mv^2$, where $m = \text{mass}$ and $v = \text{speed}$ Allow velocity instead of speed Not: KE = $\frac{1}{2}mv^2$ on its own
b(i)	initial KE = $\frac{1}{2} \times 3.0 \times 10^{-2} \times 200^{2}$ (= 600 J)	C1	
	final KE = $\frac{1}{2} \times 3.0 \times 10^{-2} \times 50^{2}$ (= 37.5 J) Loss in KE = $600 - 37.5$	C1	
	Loss in KE = 562.5 (J) ≈ 560 (J)	A1	Special case: 1 mark for 'KE = $\frac{1}{2}$ $m_{\rm L}^2$ loss in KE = ($\frac{1}{2}$ × 3.0 × 10^{-2} × 200 - $\frac{1}{2}$ × 3.0 × 10^{-2} × 50 =) 2.25 (J)' Note: No marks for 337.5 (J) when Δv used in the KE equation ($\frac{1}{2}$ × 3.0 × 10^{-2} × 150^2 = 337.5 J)
b(ii)	work done = (loss in) KE / $a = (v^2 - u^2) / 2s$		
	$F \times 1.5 \times 10^{-2} = 562.5$ / $a = (-) 1.25 \times 10^{6}$	C1	Possible ecf from (b)(i)
	force = 3.75×10^4 (N)	Al	Allow: A 2 sf answer of either 3.8×10^4 (N) or 3.7×10^4 (N)

3.

estion	Answers	Marks	Guidance	
(a)	total energy of a (closed) system remains constant or Energy cannot be created or destroyed (it can only be transferred into other forms) or total initial energy = total final energy	B1	Not: 'Energy cannot be created / destroyed / lost'	
(b)	work done = force × distance moved in the direction of the force	M1 A1	Allow: 'force × displacement' for the M1 mark	
	Unit: N m or J	B1	Note: The unit mark is an independent mark	
(c) (i)	<u>kinetic</u> energy → heat	B1	Not: friction / deformation / sound / KE of dust / KE of Earth	
(ii)	$(E = \frac{1}{2}mv^2)$ 8.4 × 10 ¹⁶ = $\frac{1}{2}$ × 3.0 × 10 ⁸ × v^2 $v^2 = \frac{2 \times 8.4 \times 10^{16}}{3.0 \times 10^8} \text{or} v = \sqrt{\frac{2 \times 8.4 \times 10^{16}}{3.0 \times 10^8}}$	C1	Note : This mark is for correct substitution Allow : 2 marks for $v^2 = 5.6 \times 10^8$	
	3.0×10^8 V 3.0×10^8 ($v = 2.37 \times 10^4 \text{ m s}^{-1}$)	A0	Allow: 1 mark for a bald answer of 2.4 × 10 ⁴	
(iii)	$8.4 \times 10^{16} = F \times 200$	C1	Possible ecf Allow:	
	$F = \frac{8.4 \times 10^{16}}{200}$ force = 4.2 × 10 ¹⁴ (N)	C1	a = $(-)\frac{u^2}{2s}$ $a = (-)\frac{(2.37 \times 10^4)^2}{2 \times 200}$ or $a = (-)\frac{(2 \times 10^4)^2}{2 \times 200}$ C1 $a = 1.4 \times 10^6 \text{ (m s}^{-2})$ or $a = 1.0 \times 10^6 \text{ (m s}^{-2})$ C1 $F = 3.0 \times 10^8 \times 1.4 \times 10^6 \text{ or } F = 3.0 \times 10^8 \times 1.0 \times 10^6$ force = 4.2×10^{14} (N) or force = 3.0×10^{14} (N)	
	T-4-1	40		
	Total	10		