<u>Circle Theorem Past Paper Answers GCSE Edexcel – Non Calculator</u>

1.

21	Cl	for angle $OAB = 90 - 56 (= 34)$	Throughout, angles may be written on the diagram; accept as evidence if correct. Ignore
	Cl	for process to find angle CAD (= 69) or angle BCA (= 56) or angle COA (= 138), eg use of alternate segment theorem or angle at centre is twice the angle at the circumference	absence of degree sign Reasons need not be given.
	C1	cao	

2.

proof	Cl	uses cyclic quad eg if $CAB = x$ then $CRO = 180 - x$ (Opposite angles of a cyclic quadrilateral add up to 180°.)	Underlined words need to be shown; reasons need to be linked to their method; any reasons not linked do not credit.
	CI	establishes relationship outside a circle eg $ORB = x$ (<u>Angles</u> on a straight <u>line</u> add up to 180)	Correct method can be implied from angles on the diagram if no ambiguity or contradiction.
	CI	uses properties of a circle eg $RO = OB$ (both radii) so $ABC = x$ (Base angles of an <u>isosceles triangle</u> are equal.)	
	Cl	Complete proof and conclusion	Full reasons given without any redundant reasons and correct reasoning throughout.

3.

90 - 2x	M1	for identifying an unknown angle eg $BAO = x$, $AOB = 180 - 2x$, $OBC = 90$, $ABC = 90 + x$	Could be shown on the diagram alone
	M1	full method to find the required angle eg a method leading to $180 - x - x - 90$	Needs to be an algebraic method Accept $x + x + 90 + y = 180$ for M2
	Al	for 90 – 2x	
	C2	(dep M2) full reasons for their method, from base angles in an isosceles triangle are equal angles in a triangle add up to 180° a tangent to a circle is perpendicular to the radius (diameter) angles on a straight line equal 180° the exterior angle of a triangle is equal to the sum of the interior opposite angles	Underlined words need to be shown; reasons need to be linked to their method; any reasons not linked do no credit.
	(C1	(dep M1) for a tangent to a circle is perpendicular to the radius (diameter))	Apply the above criteria

4.

n	Answer	Mark	Mark scheme	Additional guidance
(a)	Shown	M1	for finding one missing angle eg $BDE = y$ or $ODE = 90$ or $ODF = 90$ or $DBO = x$ or $BCD = 180 - y$ or (reflex) $BOD = 2y$	Could be shown on the diagram or in working
		A1	for a complete correct method leading to $y - x = 90$	
		Cl	(dep on A1) for all correct circle theorems given appropriate for their working eg The tangent to a circle is perpendicular (90°) to the radius (diameter) Alternate segment theorem OR Angle at the centre is twice the angle at the circumference Opposite angles in a cyclic quadrilateral sum to 180°	
(b)	Explanation	C1	for explanation eg No as y must be less than 180 as it is an angle in a triangle	

5.

Proo	f C1	draws <i>OC</i> and considers angles in an isosceles triangle (algebraic notation may be used, eg two angles labelled <i>x</i>)
	C1	finds sum of angles in triangle ABC, eg $x + x + y + y = 180$, or sum of angles at O, eg $180 - 2x + 180 - 2y$
	C1	complete method leading to $ACB = 90$
	C1	complete proof with all reasons given, eg base angles of an <u>isosceles triangle</u> are equal, <u>angles</u> in a <u>triangle</u> add up to 180°, <u>angles</u> on a straight <u>line</u> add up to 180°

6.

Answer	Mark	Notes
Proof	C1	for identifying one pair of equal angles with a correct reason,
		e.g. (angle) $BAE =$ (angle) CDE ;
		angles in the same segment are equal
		or angles at the circumference subtended on the same arc are equal
		or for identifying two pairs of equal angles with no correct reasons given
		(angles must be within the appropriate triangles)
	Cl	for identifying a second pair of equal angles with a correct reason,
		e.g. (angle) $AEB = $ (angle) DEC ;
		opposite angles or vertically opposite angles are equal
		or for identifying the three pairs of equal angles with no correct reasons given
	C1	for stating the three pairs of equal angles of the two triangles
		e.g. $ABE = DCE$, $BEA = CED$, $EAB = EDC$ with fully correct reasons

7.

estion	Working	Answer		Notes
		proof	M1	for method to find interior or exterior angle of
	Exterior angles of a polygon			regular pentagon
	add up to 360°			
	$\angle QRO = \angle OTP = 90$		M1	for using angle between tangent and radius
	The tangent to a circle is			
	perpendicular (90°) to the			
	radius (diameter)			
	$\angle ROT = 540 - 2 \times 90 - 2 \times$		M1	for method to find angle <i>ROT</i>
	108 (= 144)			
	$\angle RUT = 144 \div 2 (= 72)$		C1	for method to find angle <i>RUT</i> with reason
	The angle at the centre of a			
	circle is twice the angle at			
	the circumference			
	Base angles of an isosceles		C1	for deduction that $ST = UT$ with reasons
	triangle are equal			

8.

Working	Answer	Notes	
	29°	C1 angle $OTP = 90^{\circ}$, quoted or shown on the diagram	
		M1 method that leads to $180 - (90 + 32)$ or 58 shown at TOP OR that leads to 122 shown at SOT	
		M1 complete method leading to "58"÷2 or (180 – "122") ÷ 2 or 29 shown at <i>TSP</i>	
		C1 for angle of 29° clearly indicated and appropriate reasons linked to method eg angle between <u>radius</u> and <u>tangent</u> = <u>90</u> ° and sum of <u>angles</u> in a <u>triangle</u> = <u>180</u> °; <u>ext angle</u> of a triangle <u>equal</u> to sum of int opp <u>angles</u> and base <u>angles</u> of an <u>isos</u> triangle are <u>equal</u> or <u>angle</u> at <u>centre</u> = <u>2x angle</u> at <u>circumference</u> or <u>ext angle</u> of a triangle <u>equal</u> to sum of int opp <u>angles</u>	