

GCE

Chemistry A

H432/02: Synthesis and analytical techniques

Advanced GCE

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2020

1. Annotations available in RM Assessor

Annotation	Meaning
✓	Correct response
×	Incorrect response
^	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

1. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

SECTION A

Question	Answer	Marks	AO element	Guidance
1	A	1	1.2	
2	В	1	1.1	
3	A	1	1.1	
4	С	1	2.3	
5	D	1	1.2	
6	D	1	2.1	
7	A	1	1.1	
8	С	1	2.2	
9	D	1	1.2	
10	С	1	2.5	ALLOW 5
11	A	1	2.6	
12	A	1	2.2	
13	Α	1	1.1	
14	В	1	2.3	
15	С	1	1.2	

SECTION B

Q	uesti	ion	Answer	Marks	AO element	Guidance
16	(a)	(i)	2-bromo-3,3-dimethylbutane ✓	1	1.2	IGNORE lack of hyphens or addition of commas ALLOW 3,3-dimethyl-2-bromobutane DO NOT ALLOW 2-bromo-3-dimethylbutane methy for methyl methly for methyl brom for bromo
	(b)	(i)	Stereoisomers Same structural formula AND Different arrangement (of atoms) in space OR different spatial arrangement (of atoms) AND Type: Optical ✓	1	1.2	ALLOW structure/displayed/skeletal formula DO NOT ALLOW same empirical formula OR same general formula IGNORE same molecular formula IGNORE references to chiral molecules/compounds
		(ii)	One 3D structure with correct groups attached to the chiral C Two 3D structures of (CH ₃) ₃ CCHBrCH ₃ that are mirror images AND correct connectivity in both Br C(CH ₃) ₃ C Br C(CH ₃) ₃ C C(CH ₃) ₃	2	2.5 1.2	ALLOW small slip in one of the groups OR use of C ₄ H ₉ 3D structures must have four central bonds with at least two wedges. For bond into paper accept: '''' ALLOW two 3D structures with 2 groups swapped e.g.

Question	Answer	Marks	AO element	Guidance
				$(CH_3)_3C$ H H_3C H_3C H H_3C H H_3C H H_3C
(c)	Initiation $Br_2 \to 2Br^{\bullet} \checkmark$ Propagation	3	1.2	ALLOW $Br_2 \rightarrow Br^{\bullet} + Br^{\bullet}$ IGNORE dots for initiation step, i.e. ALLOW $Br_2 \rightarrow Br + Br \ \textbf{OR} \ Br_2 \rightarrow 2Br$
	+ Bre + HBr + Bre + Bre		2.5×2	DOT REQUIRED at correct position on chain. ALLOW 1 mark if both propagation equations are correct by atom but dot(s) missing or on incorrect C in chain ALLOW 1 mark if both propagation equations are correct including position of dot(s) but structures are not shown using skeletal formula ALLOW ECF from incorrect intermediate

C	uestion	Answer	Marks	AO element	Guidance
	(d)	further substitution/s OR produces different termination products OR More than one termination step OR Mixture of products are formed ✓	2	1.1×2	ALLOW dibromo/multibromo compounds formed OR an example of a further substitution product OR an example of a different termination product ALLOW more than one hydrogen (atom) can be replaced ALLOW radicals react with each other to form other products IGNORE references to separation of products IGNORE references to atom economy or yield
		substitution at different positions along chain ✓			ALLOW a hydrogen (atom) on a different carbon (atom) can be replaced

PMT

Question	Answer	Marks	AO element	Guidance
17 (a) (i)	CI CI CI CI Organic product with C	2	2.5×2	
(ii)	Reactivity of B in B electrons are localised OR in B π-bond is localised ✓ Reactivity of C in C electrons are delocalised OR In C π-system / ring is delocalised In B, electron density is higher AND B is more susceptible to electrophilic attack OR B attracts/accepts the electrophile/Cl₂ more OR B polarises the electrophile/Cl₂ more ✓ ORA	3	1.1×3	ALLOW labelled diagram to show delocalised system IGNORE charge density IGNORE electronegativity IGNORE B is more reactive/reacts more readily (no reference to electrophile) IGNORE references to electron density spread around the π-ring ALLOW chlorine

Question	Answer	Marks	AO element	Guidance
(iii)	Generation of electrophile $AlCl_3 + Cl_2 \rightarrow AlCl_4^- + Cl^+ \checkmark$ Attack of Cl ⁺	5	1.2	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW FeCl ₃ + Cl ₂ → FeCl ₄ ⁻ + Cl ⁺ ALLOW use of Fe NOTE: curly arrows can be straight, snake-like, etc but NOT double-headed or half-headed arrows
	Curly arrow from π-bond to Cl ⁺ ✓		1.2	1st curly arrow must • start from, OR close to, circle of benzene ring
	+ H ⁺ Correct intermediate ✓		2.5	DO NOT ALLOW following intermediate:
	Curly arrow from C–H bond to reform π-ring ✓		1.2	π-ring must cover 4 of the 6 sides of the benzene ring AND correct orientation, <i>i.e.</i> gap towards C–Cl
	Regeneration of catalyst $H^+ + AICI_4^- \rightarrow AICI_3 + HCI \checkmark$		1.2	ALLOW + sign anywhere inside the 'hexagon' of the intermediate.

Ques	tion		Answer		Marks	AO element	Guidance
							IGNORE partial charges on the chlorine in the intermediate DO NOT ALLOW mark for intermediate if any CH ₃ is missing Curly arrow must start from, OR be traced back to, any part of C-H bond and go inside the 'hexagon' ALLOW use of AlCl ₄ ⁻ in the mechanism ALLOW ECF for regeneration of an incorrect metal chloride catalyst e.g. AgCl ₃
(b)		3C ₃ H ₆ O → C ₉ H ₁₂ + 3H ₂ O molecular formulae of H ₂ O as by-product ✓ correct balanced equa	C ₃ H ₆ O AND C ₉ H ₁	2 ✓	3	2.6 2.5 2.6	moon out mount of mondo outday or o.g. / 1gois
(c)	(i)	Number of peaks	Compound C 3 ✓	Compound D 8 ✓	2	3.2	

Question	Answer	Marks	AO element	Guidance
(ii)	reagent:	5	3.2×5	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous IGNORE names for organic intermediates (question asks for structures ALLOW names of reagents and catalyst Around top arrow, ALLOW 1 of 2 marks if HNO3 and H2SO4 swapped. i.e. reagent: H2SO4 catalyst: HNO3 IGNORE references to concentration ALLOW (CH3CO)2O for left arrow IGNORE CH3COOH IGNORE acyl chloride DO NOT ALLOW AlCl3/FeCl3/Fe4
	compound D			

	Quest	ion	Answer	Marks	AO element	Guidance
18	(a)	(i)	Reagents K ₂ Cr ₂ O ₇ AND acid AND reflux ✓ Equation HO(CH ₂) ₄ OH + 4[O] → HOOC(CH ₂) ₂ COOH + 2H ₂ O	3	1.1	ALLOW Na ₂ Cr ₂ O ₇ OR Cr ₂ O ₇ ²⁻ ALLOW H ₂ SO ₄ OR HCI OR H ⁺ ALLOW words. e.g. 'acidified dichromate' ALLOW a small slip in formula for dichromate e.g KCr ₂ O ₇ ,
			[O] AND H ₂ O ✓		2.5	
			Correctly balanced equation ✓		2.6	
		(ii)	hydrogen/H bond OR OCC—(CH ₂) ₂ —C HO OCC—(CH ₂) ₂ —C HO Nydrogen/H bond H δ+ OCC HO Nydrogen/H bond H δ+ OCC HO OCC HO	2	2.1×2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW δ+ on H atoms of CH₂ group ALLOW H-bond for hydrogen bond ALLOW H bond between C=O and H₂O, i.e. O—H hydrogen/H bond IF diagram is not labelled, ALLOW hydrogen bond/H bond from text

Questi	ion	Answer		AO element	Guidance
(b)	(i)	O O	2		ALLOW the 'O' or C=O at either end, e.g. O O O O O O O O O O O O O O O O O O O
		Ester link (must be displayed) ✓		1.2	$(CH_2)_2 - \overset{ }{C} - O - (CH_2)_4 - O - \overset{ }{C} - \overset{ }{C}$
		Rest of structure ✓		2.5	IGNORE brackets IGNORE n End bonds' MUST be shown (solid or dotted) DO NOT ALLOW more than one repeat unit
	(ii)	the ester/ ester bond/ ester group /polyester can be broken down ✓ OR It can be hydrolysed ✓	1	3.2	IGNORE references to photodegradable 'Bond breaks' is not sufficient – no reference to ester bond
	(iii)	O O O O O O O O O O O O O O O O O O O	3		ALLOW alternative approach using PCl ₅ or PCl ₃
		SOCl₂ in equation ✓		1.1	
		Structure of diacyl dichloride ✓		1.2	
		Complete balanced equation ✓		2.6	

PMT

C	Questi	on	Answer	Marks	AO element	Guidance
19	(a)	(i)	(series of organic compounds with the) same functional group OR same/similar chemical properties/reactions ✓	2	1.1 ×2	IGNORE reference to physical properties IGNORE same general formula DO NOT ALLOW same empirical OR molecular formula Differs by CH ₂ is not sufficient (<i>no successive</i>)
			each successive/subsequent member differs by CH ₂ ✓			Differs by Criz is not sufficient (no successive)
		(ii)	C ₂₄ H ₄₈ O ✓	1	2.1	
	(b)		F/aldehyde AND Tollens' (reagent)	4		IGNORE use of 2,4-DNP with F
			AND Silver (mirror/precipitate/ppt/solid) ✓ G/alkene/C=C		2.3	ALLOW ammoniacal silver nitrate OR Ag ⁺ /NH ₃ ALLOW black ppt OR grey ppt
			AND Bromine/Br ₂ AND			ALLOW bromine water/ Br ₂ (aq)
			goes colourless/decolourised ✓		3.3	
			G/ketone AND 2,4-dinitrophenylhydrazine AND orange/yellow/red precipitate ✓		3.3	ALLOW errors in spelling for 2,4-DNP ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate
			G/ketone AND Tollens' (reagent)			ALLOW ammoniacal silver nitrate OR Ag ⁺ /NH ₃ ALLOW black ppt OR grey ppt
			AND no silver mirror/no change/no reaction ✓		3.3	ALLOW alterative approach using acidified potassium dichromate for tests with F and/or G, with correct observations, alongside use of 2,4-DNP

Question	Answer		Marks	AO element	Guidance	
Question (c) (i)	CH3 H CH S+C CH S+C CH S+C CH CH CH CH CH C CH CH C CH CH C CH AND curly arrow from C CH CH C CH AND CURLY ARROW from C CH CH C CH CH	3 marks CN C atom of C=O ✓ cond, C ⁸⁺ and O ⁸⁻ , c=O bond to O atom ✓ H ⁺ air OR – charge on O ⁻ of	Marks 5		ANNOTATE ANSWER WITH TICKS AND CROSSES Curly arrow must come from lone pair on C of CN OR CNOR CNOR from minus sign on C of CN ion (then lone pair on CN does not need to be shown) Curly arrow from C=O bond must start from, OR be traced back to, any part of C=O bond and go to O ALLOW curly arrow to H atom of H ₂ O, i.e. CH ₃ H H ₃ C CH CH CH CH CH CH CH CH CH	
	Name of mechanism Nucleophilic addition ✓	1 mark		1.1	IGNORE lack of dipole on H₂O	

Question	Answer	Marks	AO element	Guidance
(ii)	Heterolytic One (bonded) atom/O receives both/2 electrons ✓ Fission Breaking of a covalent bond ✓	2	1.2	ALLOW 2 electrons go to one (bonded) atom/O DO NOT ALLOW both pairs of electrons go to O IGNORE formation of ions/radicals For O atom, ALLOW species DO NOT ALLOW element or molecule ALLOW π bond in C=O breaks IGNORE breaking of C=O bond (no reference to only one bond breaking) 'Bond breaking' is not sufficient (no reference to covalent)

Question	Answer	Marks	AO element	Guidance
20 (a)*	Refer to marking instructions on page 4 of mark scheme	6	2.8×2	Indicative scientific points may include:
	for guidance on marking this question.		3.3×4	Calculation of mass of cyclopentanol
				Using moles
	Level 3 (5-6 marks)			• $n(\text{cyclopentene}) = \frac{4.00}{68} = 0.0588 \text{ (mol)}$
	A correct calculation of the mass of cyclopentanol			00
	AND A detailed description of most purification steps			• $n(\text{cyclopentanol}) = 0.0588 \times \frac{100}{64} = 0.0919(\text{mol})$
	A detailed description of most pullication steps			 Mass of cyclopentanol = 86 × 0.0919 = 7.90 g
	There is a well-developed line of reasoning which is			
	clear and logically structured. The information presented			Using mass
	is relevant and substantiated.			• Theoretical mass cyclopentene= $4.00 \times \frac{100}{64} = 6.25 \text{ g}$
	Level 2 (3-4 marks)			• Theoretical n (cyclopentanol) = $\frac{6.25}{68}$ = 0.0919 (mol)
	Calculates the mass of cyclopentanol with some errors AND			• Mass of cyclopentanol = 86 × 0.0919 = 7.90 g
	A detailed description of some purification steps OR			ALLOW for small slip in Mr / rounding errors
	A correct calculation of the mass of cyclopentanol			Examples of some calculation errors
	AND			Incorrect inverse ratio:
	A detailed description of a few purification steps			• $0.0588 \times \frac{64}{100} = 0.0376 \text{ (mol)}$
	There is a line of reasoning presented with some			• Mass = 86 × 0.0376 = 3.24 g
	structure. The information presented is relevant and			Lamania a 0/ violal airras
	supported by some evidence.			Ignoring % yield gives:
				• $\frac{4.00}{68} = 0.0588 \text{ (mol)}$
	Level 1 (1-2 marks)			• Mass = 86 × 0.0588 = 5.06 g
	Calculates the mass of cyclopentanol with some errors			, and the second
	OR			Purification
	A detailed description of some purification steps			Add a neutralising agent by formula or name e.g.
	There is an attempt at a logical structure with a line of			Na ₂ CO ₃ • In separating funnel, organic layer is on top
	reasoning. The information is in the most part relevant.			Drying with an anhydrous salt by formula or
	Telegrama and many most part forward			name, e.g. MgSO ₄ , Na ₂ SO ₄ , CaC <i>l</i> ₂
	0 marks No response or no response worthy of			Redistil at approx. 44°C
	credit.			Examples of detail in bold (NOT INCLUSIVE)

G	uestic	on	Answer	Marks	AO element	Guidance
	(b)		C=C/alkene peak in region 1620-1680 cm ⁻¹ ✓	2	3.2×2	LOOK ON THE SPECTRUM for labelled peaks which can be given credit
			O–H/alcohol peak in region 3200-3600 cm ⁻¹ ✓			IGNORE references to C-O at 1000cm ⁻¹

Que	stion	Answer	Marks	AO element	Guidance
21 (8	a)	OH H ₃ C CH ₃ NaBH ₄ OH H ₃ C CH CH H ₃ C CH CH NaBr/Br + H ₂ SO ₄ /H ⁺ Br CH CH NH ₃ AND ethanol OR excess NH ₃	5	2.5×5	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW HBr
		NH ₃ Cl NH ₂ HCl CH H ₃ C CH CH ₃ Salt H			ALLOW for the bottom left structure NH ₃ Br CH CH CH ₃

PMT

Question		Answer	Marks	AO element	Guidance
(b) ((i)	Ester Amide Amine Carboxylic acid 4 groups correct ✓✓✓ 3 groups correct ✓✓✓ 2 groups correct ✓	3	1.2×3	IGNORE amino acid ALLOW carboxyl IGNORE attempt to classify amide, e.g. secondary IGNORE formulae (question asks for names) IF > 4 functional groups are shown, • Count 4 groups max but incorrect groups first IGNORE aryl OR alkyl group e.g. benzene, phenyl, aryl, arene, methyl
	(ii)	Methanol 1 mark H ₃ C — OH Amino Acids 3 marks HOOC NH ₂ HOOC NH ₃ OR NH ₂ + NH ₃	4	2.5×4	ALLOW any combination of skeletal OR structural O displayed formula as long as unambiguous ALLOW + charge on H of NH ₃ group, i.e.NH ₃ ⁺ If BOTH amino acids are shown with NH ₃ groups (without the + charge) OR as NH ₂ ⁺ groups, award 2 of the 3 marks for the amino acids
		HOOC HOOC COOH HOOC COOH HOOC			If BOTH amino acids are shown as correctly balance salts, e.g NH ₃ Cl, all marks can be awarded.

Question	Answer	Marks	AO element	Guidance
(iii)	FIRST CHECK ANSWER ON THE ANSWER LINE If answer = 22.4 OR 22 OR 23 award 3 marks	3	2.2×3	If there is an alternative answer, apply ECF and look for alternative methods
	n(aspartame) in 1 can = 0.167 / 294 = 5.68 x 10 ⁻⁴ (mol) ✓			Alternative methods n(aspartame) in 1 can = 0.167 / 294
	n(aspartame) limit per day = 1.7x10 ⁻⁴ x 75 = 0.01275 (mol) ✓			$= 5.68 \times 10^{-4} \text{ (mol)} \checkmark$
	number of cans = $0.01275 / 5.68 \times 10^{-4} = 22.4 \checkmark$			n(aspartame) per kg = $5.68 \times 10^{-4} / 75$ = 7.57×10^{-6} (mol) \checkmark
				number of cans = $1.7 \times 10^{-4} / 7.57 \times 10^{-6}$ = $22.4\checkmark$
				OR
				n(aspartame) limit per day = 1.7x10 ⁻⁴ x 75 =0.01275 (mol) ✓
				mass(aspartame) limit per day =0.01275 x 294 = 3.7485 (g) ✓
				number of cans = 3.7485 / 0.167 = 22.4 ✓

Que	stion	Answer	Marks	AO element	Guidance
22	(a)	CDCl₃ used as a solvent ✓	2	1.1×2	Example and use required for each mark
		D₂O used to identify OH OR NH protons ✓			ALLOW for 1 mark, D ₂ O as a solvent
	(b)*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question.	6	3.1× 4 3.2× 2	Indicative scientific points: Empirical and Molecular Formulae
		Level 3 (5–6 marks) Structure I has a viable chemical structure of C ₆ H ₉ NO ₂ which has the key features consistent with spectral data AND Most of the data analysed			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.			 m/z = 127.0 and empirical formula mass (127) used to determine molecular formula as C₆H₉NO₂
		Level 2 (3–4 marks) Compound I has a viable chemical structure of C ₆ H ₉ NO ₂ with most of the key features consistent with spectral data AND			Structures of compound I
		Some of the spectral data analysed. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.			NC — C — C — CH ₂ CH ₃ — CH ₃ CH ₂ — C — O — C — CN — CH ₃ — CH ₃ — CH ₃
		Level 1 (1–2 marks) Correct determination of empirical formula and/or molecular formula. OR			$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
		Analyses some of the IR and NMR data. OR Analyses most of the NMR data.			ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous

Question	Answer	Marks	AO element	Guidance
	There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit.			 Key features C = N C=O in aldehyde, ketone, ester, amide, acid anhydride CH₃ group that would give a doublet CH₃ group that would give a triplet CH₂ group that would give a quartet ¹H NMR and IR analysis ¹H NMR spectrum δ = 4.2 ppm, quartet, 2H CH₃—CH₂—O δ = 2.9 ppm, quartet, 1H CO—CH—CH₃ δ = 1.7 ppm, doublet, 3H CO—CH—CH₃ δ = 1.3 ppm, triplet, 3H CH₃—CH₂ IR spectrum peak at 1750 (cm⁻¹) is C=O peak at 2280 (cm⁻¹) is C ≡ N ALLOW ranges from Data Sheet IGNORE references to C—O peaks

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

