GCE

Chemistry A

H032/01: Breadth in chemistry

Advanced Subsidiary GCE

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2020

Annotations

Annotation	Meaning
A	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Olternative wording
ORA	

SECTION A

Question	Answer	Marks	AO element	
1	C	1	1.2	
2	C	1	1.2	
3	B	1	1.1	
4	A	1	1.1	
5	A	1	2.1	
6	A	1	1.2	
7	B	1	1.2	
8	C	1	1.2	ALLOW 4
9	A	1	2.2	
10	B	1	2.6	
11	C	1	2.6	
12	D	1	1.1	
13	B	1	1.2	ALLOW 0.054(0)
14	A	1	1.2	
15	C	1	1.1	
16	C	1	1.1	
17	A	1	1.2	
18	C	1	2.8	ALLOW 36.7
19	B	1	1.2	
20	C	20		
		1	2.6	

SECTION B

Question			Answer					Marks	AO element	Guidance
21	(a)		Shell Electrons Requires a	1st shell 2 4 numbe	2nd shell 8 to be cor	3rd shell 18 ect \checkmark	4th shell 32	1	1.1	
	(b)		Differences: (Different number of) neutrons \checkmark Similarities: (Same number of) protons AND electrons \checkmark					2	1.1×2	IGNORE different masses/mass numbers throughout (Question asks for atomic structures) ALLOW 'amount' for 'number' ALLOW 'electron configuration' for electrons
	(c)	(i)	FIRST CHECK ANSWER ON THE ANSWER LINE If answer = 35.48 (to 2 DP) award 2 marks$\begin{aligned} & \frac{(35 \times 75.76)+(37 \times 24.24)}{100} \text { OR } 35.4848 \text { OR } 35.485 \\ & =35.48(\text { to } 2 \mathrm{DP}) \checkmark \end{aligned}$					2	1.2×2	For 1 mark: ALLOW ECF \rightarrow to 2 DP if: - \%s used with wrong isotopes ONCE OR - transposed decimal places for ONE \% AND - calculated A_{r} is between 35 and 37
	(c)	(ii)	$m / z=72:$ ${ }^{35} \mathrm{C} \mid{ }^{37} \mathrm{Cl}$ OR Contains chlorine-35 AND chlorine-37 \checkmark m / z values: 70 AND $74 \checkmark$					2	$\begin{aligned} & 3.1 \\ & 3.2 \end{aligned}$	

Question			Answer	Marks	AO element	Guidance
22	(a)	(i)	$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{5} \checkmark$ Look carefully at $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ - there may be a mistake	1	1.2	ALLOW 3d after 4s², e.g. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{5}$ ALLOW upper case D, etc and subscripts, e.g. \qquad $.4 \mathrm{~S}_{2} 3 \mathrm{D}_{1}$ DO NOT ALLOW [Ar] as shorthand for $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ IGNORE $1 \mathrm{~s}^{2}$ repeated
	(a)	(ii)	$\mathrm{P}_{4}+6 \mathrm{Br}_{2} \rightarrow 4 \mathrm{PBr}_{3} \checkmark$	1	2.6	ALLOW multiples
	(b)		Giant ionic In solid state/lattice, ions are fixed (in position) OR cannot move AND In liquid state, ions are mobile OR can move \checkmark	2	1.1 1.2	'Giant' is essential Mark independently of 1st structure mark IGNORE comments about electrons for solid IGNORE 'free' ions

Question		Answer	Marks	AO element	Guidance
(c)		FIRST CHECK ANSWER LINES If molecular formula $=\mathrm{BrF}_{5}$ AND 174.6/175 AND working showing use of ideal gas equation Award 5 marks for calculation Rearranging ideal gas equation $n=\frac{p V}{R T} \checkmark$ Unit conversion AND substitution into $n=\frac{p V}{R T}$: - $\quad R=8.314$ OR 8.31 - $\quad V=76(.0) \times 10^{-6}\left(\mathrm{~m}^{3}\right)$ - \quad Tin K: 373 K e.g. $\frac{1.00 \times 10^{5} \times 76.0 \times 10^{-6}}{8.314 \times 373} \checkmark$ Calculation of n using p, V, R AND T $n=2.45 \times 10^{-3}(\mathrm{~mol})$ Calculation of M $M=\frac{0.428}{2.45 \times 10^{-3}}=174.6$ Molecular formula BrF_{5} OR F5Br \checkmark	5	2.2×4 3.2	ALLOW ECF throughout IF $n=\frac{p V}{R T}$ is omitted, ALLOW when values are substituted into rearranged ideal gas equation. ALLOW conversion of V into dm^{3} AND p in kPa Gives same answer in powers of 10 Calculator value: from $8.314=2.450725899 \times \mathbf{1 0}^{\mathbf{- 3}}$ from $8.31=2.45190555 \times \mathbf{1 0}^{\mathbf{- 3}}$ IGNORE figures after 5 in 2.45 ALLOW ECF from a value of n that has been derived from $p V=n R T$ e.g. 0.174.6 OR 0.175 from 2.45 ALLOW ECF matching ECF \boldsymbol{M} from $p V=n R T$
	Use of $24 \mathrm{dm}^{3}$	Final 2 marks possible for use of $76.0 \mathrm{~cm}^{3}$ OR 0.760 d e.g. $\begin{array}{ll} n=\frac{76.0}{24000}=3.17 \times 10^{-3} \quad \text { No } m \\ M & =\frac{0.428}{3.17 \times 10^{-3}}=135 \checkmark \quad \text { ECF } \end{array}$ No mark (calculatio BrF_{3} ECF	by ECF much s	pler)	

Question			Answer	Marks	AO element	Guidance
23	(a)		FIRST CHECK ANSWER ON THE ANSWER LINE If answer $=0.454\left(\mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$ award 3 marks If answer $=0.227\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ award first 2 marks $\begin{array}{rc} n\left(\mathrm{Ba}(\mathrm{OH})_{2}\right) \text { in } 100 \mathrm{~cm}^{3} & 1 \text { mark } \\ =\frac{3.89}{171.3} & =0.0227 \ldots(\mathrm{~mol})^{2} \\ & 3 \text { SF or more } \end{array}$ $\begin{aligned} \begin{array}{l} \text { Concentration of } \mathrm{OH}^{-} \\ n\left(\mathrm{Ba}(\mathrm{OH})_{2}\right) \times 2 \end{array} & =2 \times 0.0227 \\ & =0.0454 \ldots(\mathrm{~mol}) \\ & =10 \times 0.0454 \\ \text { Use of } \times 10 & \\ \text { Concentration of } \mathrm{OH}^{-} & =0.454(\mathrm{~mol} \mathrm{dm} \\ & \\ & 3 \text { SF required } \end{aligned}$	3	3.1×2 3.2	ALLOW ECF throughout ALLOW use of 171 within working (Use of Ar: Ba 137 rather than 137.3) Calculator: 0.02270869819 IGNORE figures after 7 in 0.0227 ALLOW working with $\times 10$ before $\times 2$ Use of $\times 10 \quad=\mathbf{1 0} \times 0.0227$ $=0.227 \ldots . .(\mathrm{mol}) \checkmark$ Use of $\times 2 \quad=\mathbf{2 \times 0 . 2 2 7}$ Concentration of $\mathrm{OH}^{-}=0.454\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ 3 SF required Common error 0.227 no $\times 2$ marks
	(b)	(i)	(Titres that agree) within $0.1 \mathrm{~cm}^{3} \checkmark$	1	2.3	ALLOW within $0.05 \mathrm{~cm}^{3}$ ALLOW ml for cm^{3} If cm^{3} units are absent, ASSUME cm^{3} BUT DO NOT ALLOW incorrect units, e.g. dm^{3}; $\mathrm{mol} \mathrm{dm}^{-3}$

Question		Answer	Marks	AO element	Guidance
(b)	(ii)	FIRST CHECK ANSWER ON THE ANSWER LINE If answer $=0.0856\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ award 3 marks $\begin{aligned} & n\left(\mathrm{HNO}_{3}\right)=0.160 \times \frac{26.75}{1000}=4.28 \times 10^{-3}(\mathrm{~mol}) \checkmark \\ & n\left(\mathrm{Ba}(\mathrm{OH})_{2}\right) \text { in } 25.0 \mathrm{~cm}^{3}=\frac{4.28 \times 10^{-3}}{2} \\ &=2.14 \times 10^{-3}(\mathrm{~mol})^{\checkmark} \checkmark \\ & \text { Concentration }=2.14 \times 10^{-3} \times \frac{1000}{25} \\ &=0.0856\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned}$	3	2.8×2 2.4	Use ECF throughout DO NOT ALLOW 4.3×10^{-3} BUT remaining marks available by ECF e.g. $\begin{aligned} & 4.3 \times 10^{-3} \div 2=2.15 \times 10^{-3} \checkmark \mathrm{ECF} \\ & 2.15 \times 10^{-3} \times \frac{1000}{25}=0.086 \checkmark \mathrm{ECF} \end{aligned}$
(c)		Route 1 Reactant: Add water (to Ba) OR $\mathrm{H}_{2} \mathrm{O}$ in equation \checkmark Balanced equation: $\mathrm{Ba}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{H}_{2} \checkmark$ Route 2 Balanced equation with O_{2} $2 \mathrm{Ba}+\mathrm{O}_{2} \rightarrow 2 \mathrm{BaO} \checkmark$ Balanced equation with $\mathrm{H}_{2} \mathrm{O}$ $\mathrm{BaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2} \checkmark$	4	3.3 2.6 3.3 3.3	ALLOW multiples in equations Balanced equation automatically collects 2 marks for Route 1 ALLOW 1 mark for BOTH reactants in route 2: i.e. React with O_{2} AND then with $\mathrm{H}_{2} \mathrm{O}$ NOTE 3 correct balanced equations $\rightarrow 4$ marks

Question		Answer	Marks	AO element	Guidance
24	(a)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=\mathbf{- 4 6}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 3 marks Use of $\Delta_{c} H$ values and balancing numbers $\pm(+180+(3 \times-286)) \text { OR } \pm 678$ AND $\pm(2 \times-293) \text { OR } \pm 586 \text { seen anywhere } \checkmark$ Correct subtraction using $\Delta \boldsymbol{H}$ $\begin{aligned} & (-678)-(-586) \\ & =-92\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$ Calculation of $\Delta_{\mathrm{t}} \mathrm{H}\left(\mathrm{NH}_{3}\right)$ formation $\Delta_{t} H\left(\mathrm{NH}_{3}\right)=\frac{-92}{2}=-46\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	3	2.6×3	FULL ANNOTATIONS MUST BE USED ALLOW ECF throughout COMMON ERRORS (+)187 no $\times 3$ for -286 AND no $\times 2$ for -293 AND no $\div 2$ 1 mark (+)93.5 no $\times 3$ for -286 AND no $\times 2$ for -293 2 marks
	(b)	Boltzmann distribution (seen anywhere) 2 marks Curve Curve starts close to origin (ALLOW flexibility) AND curve does not touch x axis at high energy \checkmark Labels (Number of) molecules/particles AND Energy \checkmark	5	1.1×2	FULL ANNOTATIONS THROUGHOUT NOTE: Look for marking criteria within annotations on Boltzmann distribution diagram IGNORE slight inflexion on the curve IGNORE small increase at end of curve For labels, ALLOW kinetic energy IGNORE number of atoms IGNORE enthalpy for energy

Question	Answer	Marks	AO element	Guidance
	Curves for two temperatures Catalyst and activation energy Molecules and activation energy, E_{a} Explanation At higher temperature OR in presence of catalyst More molecules/particles/collisions - have energy above activation energy OR have enough energy to overcome $E_{a} \checkmark$ Could be shown on diagram(s) using shaded area with annotations		1.2×3	Temperature Drawing of two labelled curves AND higher temperature peak at higher energy AND lower on molecules IGNORE curves meeting at higher energy Higher temperature curve must cross over ASSUME that T_{2} is higher temperature than T_{1} Catalyst E_{c} shown at lower energy than E_{a} on Boltzmann distribution IGNORE catalyst provides a lower activation energy Boltzmann distribution not used ALLOW more molecules have energy to react ALLOW Ea for activation energy ALLOW Ec for activation energy with catalyst IGNORE more successful collisions OR collide more frequently

Question		Answer	Marks	AO element	Guidance
25	(a)		3	2.5×3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous For repeat unit, - 'side bonds' required on either side of repeat unit from C atoms - DO NOT ALLOW > one repeat unit IGNORE brackets - IGNOREn ALLOW in either order
	(b)	 1st curly arrow Curly arrow from double bond to Br of $\mathrm{Br}-\mathrm{Br} \checkmark$ DO NOT ALLOW partial charge on $\mathrm{C}=\mathrm{C}$ 2nd curly arrow Correct dipole on $\mathrm{Br}-\mathrm{Br}$ AND curly arrow for breaking of $\mathrm{Br}-\mathrm{Br}$ bond \checkmark	4	1.2 1.2	ANNOTATE ANSWER For curly arrows, ALLOW straight or snake-like arrows and small gaps (see examples) 1st curly arrow must - go to a Br atom of $\mathrm{Br}-\mathrm{Br}$ AND - start from, OR be traced back to any point across width of $\mathrm{C}=\mathrm{C}$ 2nd curly arrow must - start from, OR be traced back to, any part of ${ }^{\delta+} \mathrm{Br}-\mathrm{Br}^{\delta-}$ bond - AND go to $\mathrm{Br}^{\delta-}$

Question		Answer	Marks	AO element	Guidance
		3rd curly arrow Correct carbocation with + charge on C with 3 bonds AND curly arrow from Br^{-}to C^{+}of carbocation DO NOT ALLOW $\delta+$ on C of carbocation OR i.e. ALLOW carbonium + on either C atom Correct product to match mechanism DO NOT ALLOW half headed or double headed arrows but allow ECF if seen more than once		2.5 2.5	3rd curly arrow must - go to the C^{+}of carbocation AND - start from, OR be traced back to any point across width of lone pair on : Br - OR start from - charge on Br ion (Lone pair NOT needed if curly arrow shown from - charge on Br) ALLOW bromonium ion ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous NOTE: For a mechanism with HBr , ALLOW all marks EXCEPT for final product
(c)	(i)	(series of organic compounds with the) same functional group OR same/similar reactions / chemical properties each successive member differs by $\mathrm{CH}_{2} \checkmark$	2	1.1×2	IGNORE reference to physical properties IGNORE same general formula DO NOT ALLOW same empirical OR molecular formula Differs by CH_{2} is not sufficient (no successive) ALLOW differs by CH_{2} each time AW

Question		Answer	Marks	AO element	Guidance
(c)	(ii)	$\mathrm{CnH}_{2 \mathrm{n}-2} \checkmark$	1	3.2	ALLOW $\mathrm{CnH}_{2(n-1)}$
(c)	(iii)	Left-hand side, i.e. Reactants, balanced with $2 \mathrm{Br}_{2}$ Right-hand side, i.e. Product	2	2.5 2.6	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW C3 H_{4} for $\mathrm{H}_{3} \mathrm{CC} \equiv \mathrm{CH}$ Questions asks only for structure of product ALLOW H3 $\mathrm{CCBr}_{2} \mathrm{CHBr}_{2} \mathrm{OR} \mathrm{H}_{3} \mathrm{CCBr}_{2} \mathrm{CBr}_{2} \mathrm{H}$
(c)	(iv)	Any 2 structures from: $\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$ $\checkmark \checkmark$	2	3.2×2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
(c)	(v)		1	2.5	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

