Oxford Cambridge and RSA

GCE

Chemistry A

H432/01: Periodic table, elements and physical chemistry
Advanced GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations available in RM Assessor

Annotation	Meaning
	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Noted but no credit given
SEEN	Ignore
I	

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Olternative wording
ORA	

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

SECTION A

Question	Answer	Marks	AO element	Guidance
$\mathbf{1}$	\mathbf{D}	$\mathbf{1}$	AO1.1	
$\mathbf{2}$	C	$\mathbf{1}$	AO1.2	
$\mathbf{3}$	\mathbf{A}	$\mathbf{1}$	AO2.2	
$\mathbf{4}$	\mathbf{B}	$\mathbf{1}$	AO2.8	
$\mathbf{5}$	\mathbf{B}	$\mathbf{1}$	AO1.2	
$\mathbf{6}$	\mathbf{D}	$\mathbf{1}$	AO1.2	
$\mathbf{7}$	\mathbf{A}	$\mathbf{1}$	AO1.1	
$\mathbf{8}$	\mathbf{B}	$\mathbf{1}$	AO2.6	
$\mathbf{9}$	B	$\mathbf{1}$	AO1.1	
$\mathbf{1 0}$	\mathbf{A}	$\mathbf{1}$	AO2.2	
$\mathbf{1 1}$	C	$\mathbf{1}$	AO2.6	
$\mathbf{1 2}$	D	$\mathbf{1}$	AO1.2	
$\mathbf{1 3}$	B	$\mathbf{1}$	AO2.1	
$\mathbf{1 4}$	C	$\mathbf{1}$	AO1.1	
$\mathbf{1 5}$	C	$\mathbf{1}$	AO2.1	
		$\mathbf{1 5}$		

SECTION B

Question		Answer	Marks	AO element	Guidance

	estio	Answer	Marks	AO element	Guidance
17	(a)	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 mark) Detailed explanation of equilibrium, the action of the buffer and correct calculation of $\left[\mathrm{HCO}_{3}^{-}\right]$: $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ ratio. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Detailed explanation of equilibrium and the action of the buffer. OR Detailed explanation of equilibrium and correct calculation of $\left[\mathrm{HCO}_{3}\right]$: $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ ratio. OR Detailed explanation of the action of the buffer and correct calculation of $\left[\mathrm{HCO}_{3}\right]$: $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ ratio. OR Partial explanations of equilibrium, and the action of the buffer and attempt calculation of $\left[\mathrm{HCO}_{3}\right]$: $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ ratio. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Detailed explanation of equilibrium. OR Correct calculation of $\left[\mathrm{HCO}_{3}\right]$: $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ ratio. OR Detailed explanation of the action of the buffer. OR Partial explanations of equilibrium and the action of the buffer.'	6	$\begin{aligned} & 1.1 \times 2 \\ & 1.2 \times 2 \\ & 3.1 \times 1 \\ & 3.2 \times 1 \end{aligned}$	Indicative scientific points may include: (State symbols not required in equations) Equilibrium and equilibrium shifts - $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})$ - Addition of H^{+}causes \rightleftharpoons to shift to left - Addition of OH^{-}causes \rightleftharpoons to shift to right Action of buffer - Increase in H^{+}/ addition of acid leads to: $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ OR $\mathrm{HCO}_{3}{ }^{-}$reacts with added acid - Increase in OH^{-}/ addition of alkali leads to: $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ OR $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ OR $\mathrm{H}_{2} \mathrm{CO}_{3}$ reacts with added alkali Calculation of $\left[\mathrm{HCO}_{3}^{-}\right]$: $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ ratio - $K_{\mathrm{a}}=10^{-6.38}$ OR $4.17 \times 10^{-7}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ - $\left[\mathrm{H}^{+}\right]=10^{-7.40}$ OR $3.98 \times 10^{-8}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ - $\frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}$ OR $\frac{4.17 \times 10^{-7}}{3.98 \times 10^{-8}}$ - ratio = 10.47(:1) OR 10.48(:1) ALLOW 10.5 OR 10(:1) (after working shown) ALLOW $\frac{4.2 \times 10^{-7}}{4.0 \times 10^{-8}}$ And ratio = 10.5 OR 11 (after working shown)

Question		Answer	Marks	AO element	Guidance
		OR Partial explanation of equilibrium and attempt at calculation of $\left[\mathrm{HCO}_{3}{ }^{-}\right]$: $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ ratio.' OR Partial explanation of the action of the buffer and attempt at calculation of $\left[\mathrm{HCO}_{3}{ }^{-}\right]$: $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ ratio. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.			$\begin{gathered} \text { ALLOW } \frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]} \text {OR } \frac{3.98 \times 10^{-}}{4.17 \times 10^{-7}} \\ \text { And ratio }=1: 0.095 . . \end{gathered}$
17	(b)	Coordinate bond mark O_{2} (coordinately or datively) bonds with $\mathrm{Fe}^{2+} / \mathrm{Fe}(\mathrm{II}) / \mathrm{Fe} / \mathrm{Iron}$ Ligand substitution mark (When required) O_{2} is replaced by $\mathrm{H}_{2} \mathrm{O}$ OR CO_{2} $\mathrm{OR} \mathrm{O}_{2}$ is replaced by CO OR $\mathrm{H}_{2} \mathrm{O}$ OR CO_{2} is replaced by $\mathrm{O}_{2} \checkmark$ Ligand strength mark CO forms strong(er) bonds (than O_{2}) \checkmark	3	1.1×2 2.1×1	ALLOW names or symbols of ligands ALLOW $\mathrm{H}_{2} \mathrm{O} / \mathrm{CO} / \mathrm{CO}_{2}$ (coordinately or datively) bonds with $\mathrm{Fe}^{2+} / \mathrm{Fe}(\mathrm{II}) / \mathrm{Fe} /$ Iron ALLOW oxygen donates electron pair to OR binds with $\mathrm{Fe}^{2+} / \mathrm{Fe}(\mathrm{II}) / \mathrm{Fe} / \mathrm{Iron}$ DO NOT ALLOW Fe ${ }^{3+}$ ALLOW other words for replaced ALLOW $K_{\text {stab }}$ for CO (much) higher (than for O_{2}) ALLOW CO bonds irreversibly OR CO is a strong(er) ligand IGNORE affinity
		Total	9		

Question			Answer	Marks	AO	Guidance
18	(a)	(i)	$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}(\mathrm{aq})^{\checkmark}$	1	1.1	IGNORE state symbols
		(ii)	$\begin{aligned} & \mathrm{CrCl}_{3}(\mathrm{aq})+3 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{NaCl}(\mathrm{aq}) \\ & \text { or }) \\ & \mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s}) \checkmark \\ & \text { state symbols required } \end{aligned}$	1	2.8	IGNORE square brackets around precipitate formulae ALLOW $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ ALLOW 'hybrid' equations, $\begin{aligned} & \mathrm{Eg} \mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{Na}^{+}(\mathrm{aq}) \\ & {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{O}_{6}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right.} \\ & {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{6}^{3+}(\mathrm{aq})+3 \mathrm{NaOH}(\mathrm{aq}) \rightarrow} \\ & \mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+3 \mathrm{Na}^{+}(\mathrm{aq}) \end{aligned}$
		(iii)	 3-D diagram with all bonds through O in $\mathrm{OH} \checkmark$ 3 -charge \checkmark	2	$\begin{aligned} & 1.1 \\ & 2.3 \end{aligned}$	Must contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge': ALLOW dotted line OR unfilled wedge as alternatives for dotted wedge IGNORE charges inside brackets
		(iv)	$\mathrm{CrO}_{4}{ }^{2-} \checkmark$	1	3.1	IGNORE compounds e.g. $\mathrm{Na}_{2} \mathrm{CrO}_{4}$
		(v)	orange \checkmark	1	1.1	
	(b)	(i)	$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{2} \checkmark$	1	1.1	ALLOW upper case D, etc. and subscripts, e.g. 3D2 If included, ALLOW $4 \mathrm{~s}^{\circ}$
18	b	(ii)	Explanation of colours VO^{2+} goes to V^{3+} (green) AND then V^{3+} goes to V^{2+}	3	3.1×2	

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
			(violet) \checkmark Explanation using E^{θ} values (E^{\ominus} of) system $4\left(\mathrm{VO}^{2+} / \mathrm{V}^{3+}\right)$ is more positive / less negative than system $2\left(\mathrm{Fe}^{2+} / \mathrm{Fe}\right) \mathrm{OR}$ (E^{\ominus} of) system $3\left(\mathrm{~V}^{3+} / \mathrm{V}^{2+}\right.$) is more positive / less negative than system $2\left(\mathrm{Fe}^{2+} / \mathrm{Fe}\right)^{\checkmark}$ Equilibrium shift related to E^{θ} values More positive/less negative system 4 $\left(\mathrm{VO}^{2+} / \mathrm{V}^{3+}\right)$ shifts right AND More positive/less negative system 3 $\left(\mathrm{V}^{3+} / \mathrm{V}^{2+}\right)$ shifts right		3.2×1	IGNORE 'lower/higher' ALLOW reverse argument System 2 more negative than system 4 etc $E=(+) 0.78 \mathrm{~V}$ for system $4+$ system 2 reaction OR $E=(+) 0.18 \mathrm{~V}$ for system $3+$ system 2 reaction For shifts right' ALLOW (VO^{2+}) is reduced $\mathbf{O R}$ gains electrons (maybe seen as an equation) AND 'For shifts right' ALLOW (V^{3+}) is reduced OR gains electrons (maybe seen as an equation) IGNORE Fe oxidised
		(iii)	$\mathrm{Fe}+4 \mathrm{H}^{+}+2 \mathrm{VO}^{2+} \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{~V}^{3+}$	1	2.8	IGNORE state symbols ALLOW multiples ALLOW ' \rightleftharpoons '
	(c)	(i)	($0.00200 \mathrm{~mol} \mathrm{dm}^{-3}$ solution gives) a large titre which leads to a small (percentage) error / uncertainty \checkmark	1	3.4	ALLOW ($0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ solution gives) a small titre which leads to a large (percentage) error / uncertainty Assume 'it' means dilute solution ALLOW $13.50 \mathrm{~cm}^{3}$ gives a lower percentage error than $1.35 \mathrm{~cm}^{3}$
18	c	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=\mathbf{3 0 1} \mathbf{~ m g}$ award 5 marks	5	2.8×5	ALLOW ECF throughout ALLOW working to 3SF minimum throughout

Question		Answer	Marks	AO element	

Question			Answer	Marks	AO element	Guidance
19	(a)	(i)	More energy is released by forming bonds than energy required when breaking bonds OR bond enthalpy of bonds being made is higher than bond enthalpy of bonds being broken \checkmark	1	1.2	Response needs link between energy, breaking and making bonds Eg 'bond breaking is endothermic' AND 'bond making is exothermic' AND 'exothermic change outweighs endothermic change' IGNORE more bonds made than broken
		(ii)	FIRST CHECK ΔG If $\Delta G=\mathbf{- 1 0 1 0}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award first 3 marks $\begin{aligned} & \Delta S=(2 \times 248+2 \times 70)-(2 \times 206+3 \times 205) \\ & =-391\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \mathrm{OR}-0.391\left(\mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\ & \begin{aligned} \Delta G & =\Delta H-T \Delta S=-1125-(293 \times-0.391) \\ & =-1010\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark \end{aligned} \end{aligned}$	4	2.2×3	ALLOW ecf ALLOW - $1010000\left(\mathrm{~J} \mathrm{~mol}^{-1}\right)$ ALLOW 3 SF up to calculator value -1010.437 Common errors ALLOW: Two calculation marks for: -1117 to 3 SF up to calculator value of -1117.179865 (use of 20 instead of 293) $(+) 113438\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ or $113000,113400,113440$ (mix of J and kJ) -1008 up to calculator value of -1008.482 (use of T = 298) -1018 up to calculator value of -1018.257 (use of T = 273) ALLOW ECF for from incorrect $\Delta \mathrm{G}$, eg Non feasible AND $\Delta G>0$ OR ΔG is +ve
19	a	(iii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=\mathbf{- 2 0}\left(\mathbf{k J ~ m o l}^{-1}\right)$ award 3 marks	3	2.2×3	

Question		Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
		Using Both $\Delta c H^{\circ}$ values multiplied by 2 $2 \times(-296.8)$ or -593.6 AND $2 \times(-285.8) \text { or }-571.6(=-1165.2)$ Use of -1125 and correctly processed: $\begin{aligned} & 2 \Delta_{\mathrm{f}} H\left(\mathrm{H}_{2} \mathrm{~S}\right)=[2 \times(-296.8)+2 \times(-285.8)]-(-1125) \\ & =-40.2(\mathrm{~kJ} \mathrm{~mol} \end{aligned}$ Division by 2 $\Delta_{\mathrm{f}} \mathrm{H}\left(\mathrm{H}_{2} \mathrm{~S}\right)=-20\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)^{\checkmark}$			First mark may be awarded from data on a cycle ALLOW - 20.1(0) ALLOW ECF: third mark is for dividing by 2 and use of all three values Common errors Two marks for (+)20(.1) ALLOW ecf if no multiplication by two occurred $[(-296.8)+(-285.8)]-(-) 1125=(+) 542.4$ for $2^{\text {nd }}$ mark Leading to $\Delta_{i} H\left(H_{2} \mathrm{~S}\right)=(+) 271(.2)$ for $3^{\text {rd }}$ mark ALLOW $-296.8-285.8=-582.6$ for $1^{\text {st }}$ mark if $1125 / 2$ OR - 562.5 is seen in $2^{\text {nd }}$ mark
(b)	(i)	$\left(K_{\mathrm{p}}\right)=\frac{p\left(\mathrm{SO}_{3}\right)^{2}(\mathrm{~g})}{p\left(\mathrm{SO}_{2}(\mathrm{~g})\right)^{2} \times p\left(\mathrm{O}_{2}(\mathrm{~g})\right)} \downarrow$ $\operatorname{atm}^{-1} \checkmark$	2	1.2×2	ALLOW species without state symbols and without brackets. e.g., $p \mathrm{SO}_{3}{ }^{2}, p p \mathrm{SO}_{3}{ }^{2}, \mathrm{PSO}_{3}{ }^{2}, p\left(\mathrm{SO}_{3}\right)^{2}\left(\mathrm{pSO}_{3}\right)^{2}$ etc. DO NOT ALLOW square brackets ALLOW atm as ECF if K_{p} is upside down ALLOW use of any pressure unit eg Pa^{-1} or kPa^{-1}

Question			Answer	Marks	AO element	Guidance
19	b	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE if answer $=27.2$ award 5 marks Initial amounts $\begin{aligned} & n\left(\mathrm{SO}_{2}\right)=\left(\frac{10.2}{24.0}=\right) 0.425(\mathrm{~mol}) \text { AND } \\ & n\left(\mathrm{O}_{2}\right)=\left(\frac{12}{32.0}=\right) 0.375(\mathrm{~mol}) \end{aligned}$ Equilibrium amounts in moles $\begin{aligned} & n\left(\mathrm{SO}_{2}\right)=(0.425-0.350=) 0.075(\mathrm{~mol}) \text { AND } \\ & n\left(\mathrm{O}_{2}\right)=(0.375-0.350 / 2=) 0.200(\mathrm{~mol}) \checkmark \end{aligned}$ Total moles $n_{\text {tot }}=0.625(\mathrm{~mol}) \vee$ Partial pressures $\begin{aligned} & p \mathrm{SO}_{2}=\left(\frac{0.075}{0.625} \times 2.50=\right) 0.3(\mathrm{~atm}) \text { AND } \\ & p \mathrm{O}_{2}=\left(\frac{0.2}{0.625} \times 2.50=\right) 0.8(\mathrm{~atm}) \text { AND } \\ & p \mathrm{SO}_{3}=\left(\frac{0.350}{0.625} \times 2.50=\right) 1.4(\mathrm{~atm}) \end{aligned}$ K_{p} to 3 SF $\left(K_{\mathrm{p}}=\frac{1.4^{2}}{0.3^{2} \times 0.8}=\right) 27.2\left(\mathrm{~atm}^{-1}\right)$	5	2.6×5	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. Common errors Allow 4 marks for 1.45/1.46 (depending upon rounding) Initial amounts $n\left(\mathrm{SO}_{2}\right)=2 \times n\left(\mathrm{O}_{2}\right)$ $n\left(\mathrm{O}_{2}\right)=0.375$ and $n\left(\mathrm{SO}_{2}\right)=0.75(0)$ Equilibrium moles $n\left(\mathrm{SO}_{2}\right) 0.75-0.350=0.4(0)$ $n\left(\mathrm{O}_{2}\right)=0.2(0)$ total moles $n_{\mathrm{tot}}=0.95$ partial pressures $p \mathrm{SO}_{2}=1.05$ $\mathrm{pO}_{2}=0.526$ $p \mathrm{SO} 3=0.921$ Allow 4 marks for 15.1/15.0 Initial amounts $n\left(\mathrm{O}_{2}\right)=12 / 16=0.75$ Equilibrium moles $n\left(\mathrm{O}_{2}\right)=0.575$ total moles $n_{\mathrm{tot}}=1.00$ partial pressures $p \mathrm{SO}_{2}=0.188$ $p \mathrm{O}_{2}=1.438$ $p \mathrm{SO} 3=0.88$ IGNORE units

Question			Answer	Marks	AO element	Guidance
19	b	(iii)	(greater K_{p} value means) equilibrium position shifted to right/RHS Lower temperature because (forward) reaction is exothermic	2	3.2×2	ALLOW greater/higher amount of $\mathrm{SO}_{3} /$ product ALLOW greater K_{p} means larger numerator
		(iv)	equilibrium position (far) to the right \checkmark	1	3.2	ALLOW (very) high yield of products or of SO_{3} ALLOW reaction is nearly complete / irreversible ALLOW Forward reaction is (greatly) favored ALLOW (far) more product(s) than reactant(s) or ALLOW equilibrium (greatly) favours product

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
19	(c)	(i)	 Correct drawing of Boltzmann distribution Curve starts within one small square of origin AND not touching the x axis at high energy \checkmark Axes labels: y: (number of) molecules/particles AND x : (kinetic) energy r Catalyst and activation energy Catalyst provides a lower activation energy OR E_{c} shown to the left of E_{a} on Boltzmann distribution \checkmark Particles with $E>E_{a}$ more or a greater proportion of molecules / particles / collisions have (energy above) activation energy (with catalyst) OR more molecules have enough energy to react $\mathbf{O R}$ greater area under curve above activation energy	4	$\begin{aligned} & 1.1 \\ & \times 4 \end{aligned}$	DO NOT ALLOW two curves Confusion with effect of temperature DO NOT ALLOW 'enthalpy' for x -axis label DO NOT ALLOW 'atoms' as y-axis label ALLOW ECF for atoms (instead of molecules/particles) if y axis labelled as 'atoms' IGNORE (more) successful collisions IGNORE response implying 'more collisions' (confusion with effect of greater temperature)
		(ii)	heterogeneous (catalyst) AND catalyst in a different phase/state (from other substances)	1	1.2	ALLOW catalyst is a solid AND not a gas / everything else is a gas
			Total	23		

Question			Answer	Marks	AO element	Guidance
20	(a)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 2.98 award 2 marks $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(\mathrm{Ka} \times\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right]\right)=1.039 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\vee}} \\ & \mathrm{pH}=-\log 1.039 \times 10^{-3}=2.98(\text { Must be to } 2 \mathrm{DP}) \checkmark \end{aligned}$	2	2.2×2	ALLOW ECF throughout ONLY ALLOW pH mark by ECF if K_{a} AND 0.080 used and AND pH <7 Common errors (Must be to 2 DP) One mark for $\mathrm{pH}=5.97$ (No square root): One mark for $\mathrm{pH}=0.92 \mathrm{OR} \mathrm{pH}=5.15$ (Using incorrect K_{a} values)
	(b)	(i)	$\left.n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right)=\left(0.0800 \times \frac{25.0}{1000}\right)=\right) 0.002(\mathrm{~mol})$ AND $V(\mathrm{NaOH})=\frac{0.002}{0.100} \times 1000=\left(=20(.0) \mathrm{cm}^{3}\right)$	1	2.5	ALLOW $0.02 \mathrm{dm}^{3}$ if unit given Mark is for WORKING which could all be shown as 1 step ALLOW method showing $20 \mathrm{~cm}^{3} \mathrm{NaOH}$ contains the same moles as acid $\begin{aligned} & n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right)=0.08(00) \times 0.025(0)=0.002(\mathrm{~mol}) \\ & \text { and } \\ & n(\mathrm{NaOH})=0.02(00) \times 0.1=0.002(00)(\mathrm{mol}) \end{aligned}$
20	b	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE	4		ALLOW ECF throughout

Question			Answer	Marks	$\begin{array}{\|c\|} \hline \text { AO } \\ \text { element } \end{array}$	Guidance
			If answer = 12.55 award 4 marks Excess mol of NaOH : $\begin{aligned} & n\left(\mathrm{OH}^{-}\right)_{\text {excess }}=n\left(\mathrm{OH}^{-}\right)-n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right) \\ & =\left(0.100 \times \frac{45.0}{1000}\right)-\left(0.0800 \times \frac{25.0}{1000}\right) \\ & =0.0045-0.002=0.0025(\mathrm{~mol}) \checkmark \end{aligned}$ Concentration of OH^{-}: $\left[\mathrm{OH}^{-}\right]=\left(\frac{0.0025}{70.0 \times 10^{-3}}\right)=0.0357\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ Concentration of \mathbf{H}^{+}: $\left[\mathrm{H}^{+}\right]=\left(\frac{1.00 \times 10^{-14}}{0.0357}\right)=2.8 \times 10^{-13}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ Conversion to $\mathbf{p H}$: $\mathrm{pH}=\left(-\log 2.8 \times 10^{-13}\right)=12.55$		$\begin{aligned} & 1.2 \times 1 \\ & 2.6 \times 3 \end{aligned}$	For first mark ALLOW (Excess volume of $\mathrm{NaOH}=25(.0) \mathrm{cm}^{3}$) $n\left(\mathrm{OH}^{-}\right)_{\text {excess }}=0.100 \times \frac{25.0}{1000}=0.0025(\mathrm{~mol})$ Common errors If initial $V(\mathrm{NaOH})=45 \mathrm{~cm}^{3}$ $\left[\mathrm{OH}^{-}\right]=0.0643(\mathrm{~mol})$ $\left[\mathrm{H}^{+}\right]=1.56 \times 10^{-13}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ $\mathrm{pH}=12.81$ award three marks (no $1^{\text {st }}$ mark) If $n\left(\mathrm{OH}^{-}\right)_{\text {excess }}$ is used in $\left[\mathrm{H}^{+}\right]$calculation $n\left(\mathrm{OH}^{-}\right)_{\text {excess }}=0.0025(\mathrm{~mol})$ $\left[\mathrm{H}^{+}\right]=\frac{1.00 \times 10^{-14}}{0.0025}=4 .(00) \times 10^{-12}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ $\mathrm{pH}=11.40$ award three marks (no $2^{\text {nd }}$ mark) ALLOW pOH method for last two marks $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=1.447$ $\mathrm{pH}=14-1.447=12.55$ ALLOW ECF for conversion from $\left[\mathrm{H}^{+}\right]$to pH provided value calculated is above 7 and from derived $\left[\mathrm{H}^{+}\right]$
20	b	(iii)	Shape	3	2.3×1	If pH curves wrong way round (i.e. adding acid to

Question	Answer	Marks	AO element	Guidance
	Slight rise/flat, AND (near) vertical, AND then slight rise/flat pH Vertical section within the extremes of pH 5 to 12 and a minimum range of three pH units AND middle of vertical section (equivalence point) needs to be above $\mathrm{pH} 7 \checkmark$ End point Vertical section at $\sim 20 \mathrm{~cm}^{3} \mathrm{NaOH} \checkmark$		2.4×2	alkali), ONLY award mark for End point ($\sim 20 \mathrm{~cm}^{3}$)
(iv)	cresol purple AND pH range matches vertical section/rapid pH change OR end point/colour change matches vertical section/rapid pH change \checkmark	1	3.3	ALLOW pH range (of the indicator) matches equivalence point ALLOW end point/colour change matches equivalence point IGNORE colour change matches end point Colour change is the same as end point
(v)	similarity: end point / volume $\left(20 \mathrm{~cm}^{3}\right)$ of NaOH needed to neutralise OR final $\mathrm{pH} /$ shape of curve after end point \checkmark difference: HCN higher starting pH OR HCN shorter vertical section \checkmark	2	3.2×2	End point must not refer to same pH ALLOW different equivalence point IGNORE different starting pH

Qu	Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
21	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Most evidence used to determine the correct orders AND rate equation AND rate constant. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some evidence used to determine two orders correctly AND rate equation AND rate constant consistent with orders. OR Little evidence used to determine all three orders correctly AND rate equation AND rate constant. There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1-2 marks) Little evidence used to determine two orders correctly OR One order correct, with attempt to determine the rate equation AND rate constant. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	$\begin{aligned} & 3.1 \times 4 \\ & 3.2 \times 2 \end{aligned}$	Indicative scientific points may include: Orders Student 1 - zero order wrt Br_{2} Student 2 - 1st order wrt $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ Student 3 - 1st order wrt H^{+} Explanations Student 1 - constant gradient OR linear negative gradient OR constant rate OR rate independent of concentration OR decreasing half-life Student 2 - straight line through 0,0 - OR rate directly proportional to $\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]$ $\mathrm{OR}\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right] \times 2$, rate $\times 2$ Student 3 - $\left[\mathrm{H}^{+}\right] \times 2$, rate $\times 2$ Rate equation, rate constant and units - rate $=k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{H}^{+}\right]$ ALLOW rate $=k\left[\mathrm{Br}_{2}\right]^{0}\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]^{1}\left[\mathrm{H}^{+}\right]^{1}$ - $k=\frac{\text { rate }}{\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{H}^{+}\right]}$OR $\frac{1.25 \times 10^{-5}}{1.6 \times 0.2}$ - $k=3.9 \ldots \times 10^{-5}$ - units: $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ (Any order, e.g. $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$)
	Total	6		

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

