Oxford Cambridge and RSA

GCSE (9-1)

Physics A (Gateway)

J249/02: Paper 2 (Foundation Tier)
General Certificate of Secondary Education

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations available in RM Assessor

Annotation	Meaning
\checkmark	Correct response
N	Incorrect response
\bigcirc	Omission mark
	Benefit of doubt given
BOD	Contradiction
ORN	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
	Level 2
$\boxed{L 2}$	Level 3
NEOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions)

Annotation	Meaning
	alternative and acceptable answers for the same marking point
DO NOT ALLOW	Separates marking points
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Uords which are not essential to gain credit
ECF	Urror carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Physics A:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures. AO3.1 Analyse information and ideas to interpret and evaluate.
AO3.1a	Analyse information and ideas to interpret.
AO3.1b	Analyse information and ideas to evaluate.
AO3.2	Analyse information and ideas to make judgements and draw conclusions.
AO3.2a	Analyse information and ideas to make judgements.
AO3.2b	Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3a	Analyse information and ideas to develop experimental procedures.
AO3.3b	Analyse information and ideas to improve experimental procedures.

For answers to Section A if an answer box is blank ALLOW correct indication of answer e.g. circled or underlined.

Question	Answer	Marks	AO element	Guidance
1	C \checkmark	1	1.1	
2	D \checkmark	1	1.2	
3	D \checkmark	1	1.1	
4	C \checkmark	1	1.1	
5	B \checkmark	1	2.1	
6	B \checkmark	1	1.1	
7	C \checkmark	1	1.2	
8	B \checkmark	1	1.1	
9	B \checkmark	1	2.1	
10	B \checkmark	1	1.1	
11	C \checkmark	1	2.1	
13	D \checkmark	1	1.2	
14	A \checkmark	1	2.1	
15	A \checkmark	1	2.2	
		1	1.1	

Question			Answer	Marks	AO element	Guidance
16	(a)	(i)	$40\left({ }^{\circ} \mathrm{C}\right)^{\checkmark}$	1	2.2	
		(ii)	Any one from: Difference is much too high / difference should be lower than the previous result AW \checkmark End temperature is too low	1	3.2a	ALLOW does not follow the trend/pattern IGNORE not stirring/thermometer touching the bottom / start temperature / boiling temperature
	(b)		All points plotted correctly Appropriate straight line of best fit	2	2×2.2	ALLOW tolerance of \pm half a square DO NOT ALLOW straight line from top to bottom ALLOW ECF for mis-plotted data points
	(c)		(As thickness of the insulation increases) temperature difference falls / ORA \checkmark	1	3.1a	
	(d)		As thickness increases rate decreases / AW / ORA \checkmark	1	3.2b	ALLOW as thickness increases tea cools slower / takes longer to cool ORA
	(e)		Any two from: Keep starting temperatures the same Keep room temperature the same Stir tea before taking measurements Use a lid / add (same) insulation underneath the cup / cover whole cup in (same) thickness insulation Repeat and average	2	2×3.3b	

Question			Answer	Marks	AO element	Guidance
18	(a)	(i)	Ray from prism: straight line (by eye) towards focal point Ray from block: continues straight \checkmark	2	2×1.2	IGNORE ray in prism IGNORE other rays
		(ii)	(in long sight) rays focused behind retina / eye (ball) / AW Convex lens refracts light inwards / focuses light on the retina / AW	2	2×1.1	ALLOW near object focussed behind the retina / eye (ball) or eye (ball) is too short ALLOW converges / meet for focuses
	(b)		Black AND Any one from: Black because blue light absorbed by red paper \checkmark Black because red paper only reflects red light Black because red paper absorbs all colours except red \checkmark Black because no light reflected from paper \checkmark	2	2×2.2	ALLOW dark without any colour

| Question | | Answer | Marks | AO
 element | Guidance |
| :---: | :---: | :--- | :--- | :---: | :---: | :---: |
| $\mathbf{1 9}$ | (a) | spoon A
 AND
 (More radiation emitted) at higher temperature / hotter
 objects (emit more radiation) / spoon A is hotter / AW /
 ORA \checkmark | $\mathbf{1}$ | $\mathbf{1 . 1}$ | ALLOW spoon A is heated (more) |

Question			Answer	Marks	AO element	Guidance
21	*		Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Detailed description of the procedure and the measurements (including a labelled diagram). AND Correct calculation of the change in thermal energy. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Detailed description of the procedure and the measurements (with a diagram). OR Description of the procedure and the measurements (with a diagram). AND Correct calculation of the change in thermal energy. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Basic description of the procedure and the measurements. OR Correct calculation of the change in thermal energy. There is an attempt at a logical structure with a line of	6	$\begin{gathered} 2 \times 3.3 \mathrm{a} \\ 2 \times 2.2 \\ 2 \times 2.1 \end{gathered}$	AO3.3a Analyse information and ideas to develop experimental procedures - liquid placed in beaker - heater immersed in liquid - heater connected to power supply - insulation arranged to reduce heat loss - thermometer - instrument(s) to determine energy e.g. stopwatch, circuit AO2.2 Apply knowledge and understanding of scientific enquiry, techniques and procedures measurements - Explanation of obtaining mass of 200 g - Initial temperature measured - Temperature rise / change / temperature after measured - Method to determine the energy e.g. use of joule meter / E = ItV method / power of heater and time. AO2.1 Apply knowledge and understanding of scientific ideas to calculate change in thermal energy - use of $E=m \times c \times t$ - $E=0.2 \times 4200 \times 20$ - $E=16800 \mathrm{~J}$

Question		Answer	Marks	AO element	Guidance
		reasoning. The information is in the most part relevant. $\mathbf{0}$ marks No response or no response worthy of credit.			

| Question | | Answer | Marks | AO
 element | Guidance |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathbf{2 2}$ | (a) | Any two from:
 Electron absorbs or gains energy / AW \checkmark
 Electron becomes 'excited' / moves to a higher energy
 level / moves to outer path / AW \checkmark
 Electron escapes / leaves the atom / AW \checkmark | $\mathbf{2}$ | $\mathbf{2 \times 1 . 1}$ | |
| (b) | (ii)Any two from:
 Electromagnetic radiation is being absorbed by electrons
 not nucleus \checkmark
 Alpha emitted from the nucleus / electrons not present in
 the nucleus / AW \checkmark
 Alpha emitted from unstable radioactive nuclei \checkmark
 Alpha does not have electrons / has protons and neutrons
 only / AW \checkmark | $\mathbf{2}$ | $\mathbf{2 \times 1 . 1}$ | ALLOW atom becomes ionised / charged | |

Question			Answer	Marks	AO element	Guidance
23	(a)		$25(\mathrm{~g}) \checkmark$	1	1.2	
\square	(b)	(i)	C \checkmark	1	2.2	ALLOW answer from diagram if clear
		(ii)	Any four from: A is more hazardous / B is safer (for most of the time on the graph) \checkmark A has a higher activity (for most of the time) B is more hazardous at the beginning ORA \checkmark B has a higher activity at the beginning ORA \checkmark A has a longer half-life / B has a shorter half-life	4	4×3.1b	
		(iii)	Maximum two from: One absorber placed between detector and isotope A \checkmark (Idea of) change absorber and repeat experiment \checkmark Measures (background) count with no source \checkmark Maximum two from: Drop in count rate with cardboard indicates alpha \checkmark Drop in count rate with aluminium indicates beta \checkmark Drop in count rate with lead OR cardboard and aluminium / all materials are penetrated indicates gamma \checkmark	4	2×2.2 2×1.2	May be described or drawn in a diagram ALLOW stopped / absorbed for drop in count rate

Question		Answer	Marks	AO element	Guidance
(c)	(i)	Nuclei join (in fusion) ${ }^{\checkmark}$	1	1.1	ALLOW fuse / combine
	(ii)	Any two from: High temperature High pressure Large gravitational forces (due to large mass) \checkmark	2	2×2.1	IGNORE heat
	(iii)	The sun will expand / become a red giant / (ultimately) become a white dwarf \checkmark	1	1.1	ALLOW fusion of helium / heavier elements
(d)		Any one from: supplies of uranium are large enough / will not run out to consider it renewable / AW \checkmark Uranium is not being replaced / used quicker than it is being replaced to consider it non-renewable	1	2.1	

| Question | | Answer | Marks | AO
 element | Guidance |
| :---: | :---: | :--- | :--- | :---: | :---: | :---: |

Question		Answer	Marks	AO element	Guidance
(d)		Maximum 2 marks from: Higher speed increases braking distance BUT Double speed quadruples braking distance / braking distance is (directly) proportional to the speed squared AW $\checkmark \checkmark$ Maximum 2 marks from: (Idea that) higher speed (car has) more KE BUT Double speed quadruples KE / KE is (directly) proportional to the speed squared / AW	3	3.1a x2 2.1 3.1a x2	ALLOW numerical values from graph, e.g. at 10 $(\mathrm{m} / \mathrm{s})$, bd $=7.5(\mathrm{~m})$ but at $20(\mathrm{~m} / \mathrm{s}) \mathrm{bd}=30(\mathrm{~m})$. ALLOW numerical values from graph, e.g. at $10(\mathrm{~m} / \mathrm{s})$, bd $=7.5(\mathrm{~m})$ but at $20(\mathrm{~m} / \mathrm{s})$ bd $=$ 4×7.5 (= 30 m) for 2 marks

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

