Surname

Centre Number

wjec

Other Names

GCSE – NEW

3420UA0-1

PHYSICS – Unit 1: Electricity, Energy and Waves

HIGHER TIER

FRIDAY, 15 JUNE 2018 - MORNING

1 hour 45 minutes

For Examiner's use only					
Question	Maximum Mark	Mark Awarded			
1.	15				
2.	11				
3.	8				
4.	9				
5.	9				
6.	13				
7.	15				
Total	80				

ADDITIONAL MATERIALS

In addition to this paper you will require a calculator, a ruler and a drawing compass.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space use the additional page at the back of the booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. The assessment of the quality of extended response (QER) will take place in question **6**(*a*).

Equations	
current = voltage resistance	$I = \frac{V}{R}$
total resistance in a series circuit	$R = R_1 + R_2$
total resistance in a parallel circuit	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_1}$
energy transferred = power × time	E = Pt
power = voltage × current	P = VI
power = $current^2 \times resistance$	$P = I^2 R$
% efficiency = $\frac{\text{energy [or power] usefully transferred}}{\text{total energy [or power] supplied}} \times 100$	
density = $\frac{mass}{volume}$	$\rho = \frac{m}{V}$
units used (kWh) = power (kW) × time (h) cost = units used × cost per unit	
wave speed = wavelength \times frequency	$v = \lambda f$
speed = distance time	
pressure = $\frac{\text{force}}{\text{area}}$	$p = \frac{F}{A}$
<i>p</i> = pressure <i>V</i> = volume	$\frac{pV}{T}$ = constant

pressure = $\frac{\text{force}}{\text{area}}$	$p = \frac{F}{A}$
p = pressure V = volume T = kelvin temperature	$\frac{pV}{T}$ = constant
	$T/K = \theta/°C + 273$
change in = mass × specific heat × change in thermal energy capacity temperature	$\Delta Q = mc\Delta\theta$
thermal energy for a = mass × specific latent change of state heat	Q = mL
force on a conductor (at right = magnetic field × current × length angles to a magnetic field) strength carrying a current	F = BIl
V_1 = voltage across the primary coil V_2 = voltage across the secondary coil N_1 = number of turns on the primary coil N_2 = number of turns on the secondary coil	$\frac{V_1}{V_2} = \frac{N_1}{N_2}$

SI multipliers

Prefix	Multiplier	
р	1 × 10 ⁻¹²	
n	1 × 10 ⁻⁹	
μ	1 × 10 ⁻⁶	
m	1 × 10 ⁻³	

Prefix	Multiplier
k	1 × 10 ³
М	1 × 10 ⁶
G	1 × 10 ⁹
Т	1 × 10 ¹²

 R_2

 $\frac{1}{R_2}$

3

		Answer all questions.
the p	owers	ing circuits are set up to investigate a light dependent resistor (LDR). The voltage supply is changed to vary the power of the lamp to alter its brightness. The resistance R is measured with an ohmmeter Ω for each power of the lamp.
(a)	(i)	State two variables, other than using the same components , that should b controlled in this experiment. [2 1
		2
(b)	(ii)	2. Explain how the design of the experiment could be improved to make the result more valid. [2] results are shown in the table below.
(b)		Explain how the design of the experiment could be improved to make the result more valid. [2] results are shown in the table below. Power of Resistance Image: Image of LDR Image of LDR
(b)		Explain how the design of the experiment could be improved to make the result more valid. [2] results are shown in the table below. [2] Power of lamp (W) Resistance of LDR (KΩ)
(b)		Explain how the design of the experiment could be improved to make the result more valid. [2] results are shown in the table below. $\frac{Power of Resistance of LDR (W) (k\Omega)}{2 19.5}$
(b)		Explain how the design of the experiment could be improved to make the result more valid. [2] results are shown in the table below. $\frac{Power of Resistance of LDR (W) (k\Omega)}{2 19.5}$
(b)		Explain how the design of the experiment could be improved to make the result more valid. [2] results are shown in the table below. $\frac{Power of Resistance}{lamp} of LDR \\ (W) (k\Omega) \\ \hline 2 \qquad 19.5 \\ \hline 4 \qquad 10.3 \\ \hline 8 \qquad 3.0 \\ \hline \end{bmatrix}$
(b)		Explain how the design of the experiment could be improved to make the result more valid. [2] results are shown in the table below. $\frac{Power of Resistance of LDR (W) (K\Omega)}{2 19.5}$ $\frac{2 19.5}{4 10.3}$ $8 3.0$ $12 2.2$
(b)		Explain how the design of the experiment could be improved to make the result more valid. [2] results are shown in the table below. $Power of Resistance of LDR (W) (k\Omega) (2) 19.5 4 10.3 8 3.0 12 2.2 16 1.5 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$
(b)		Explain how the design of the experiment could be improved to make the result more valid. [2] results are shown in the table below. $\frac{Power of Resistance of LDR (W) (K\Omega)}{2 19.5}$ $\frac{2 19.5}{4 10.3}$ $8 3.0$ $12 2.2$

			— г .
	(ii)	Use the graph to find the resistance of the LDR for a lamp power of 10 W. [1	[]
		Resistance =	2
	(iii)	It is suggested that when the lamp power doubles, the LDR resistance halves Explain, using values from the table, to what extent this suggestion is true. [3	
(C)	The curre the L	LDR is connected into another circuit. The voltage across the LDR is 2.8V and the ent through it is 0.35mA. Use an equation from page 2 to calculate the resistance of _DR.	of
		Resistance =	2

Examiner only The epicentre is the point on the Earth's surface directly above an earthquake. Seismic stations 2. detect earthquakes by the tracings made on seismographs. Surface, P and S waves are three types of earthquake waves. (a) Tick (\checkmark) the boxes next to the **three** correct statements about earthquake waves. [3] Surface waves travel the fastest S waves travel on the surface of the Earth S waves are transverse waves P waves travel through solids and liquids P waves are longitudinal waves S waves cause the most damage 3420UA01 07

3420UA01 09

			Examiner
3.	(a)	Measurements from an experiment to find the density of an irregular shaped solid are given below.	only
		Mass of the solid = 26.0 g Volume of water in measuring cylinder = 40 cm^3 Volume of water and solid = 48 cm^3	
		Use an equation from page 2 and the information above to calculate the density of the solid. [3]	
		Density = g/cm ³	
	(b)	Describe how you would change the experiment to find the density of an irregular shaped solid that floated on water. [3]	
			3420UA01
	······		
	••••••		
	(C)	Explain in terms of particles why most solids have greater densities than water. [2]	
	•••••		8

(a)	Desc	cribe the advantages of household ring main circuits. [3]]
(b)	Expl	ain which safety device operates when the following faults occur.	
	(i)	The ring main circuit stops working when an additional fault-free appliance is plugged into it. [2]	
	(ii)	The circuit stops working when a lawnmower accidentally cuts the power cable during use.	
(C)	Expl those	lain why electrical appliances with a metal casing require an earth lead whereas e with a plastic casing do not. [2]	
(c)	Expl thos	ain why electrical appliances with a metal casing require an earth lead whereas e with a plastic casing do not. [2]	
(C)	Expl thos	ain why electrical appliances with a metal casing require an earth lead whereas e with a plastic casing do not. [2]	
(c)	Expl	ain why electrical appliances with a metal casing require an earth lead whereas e with a plastic casing do not. [2]	
(C)	Expl	ain why electrical appliances with a metal casing require an earth lead whereas e with a plastic casing do not. [2]	
(c)	Expl	ain why electrical appliances with a metal casing require an earth lead whereas e with a plastic casing do not. [2]	
(C)	Expl	ain why electrical appliances with a metal casing require an earth lead whereas e with a plastic casing do not. [2]	
(C)	Expl	lain why electrical appliances with a metal casing require an earth lead whereas e with a plastic casing do not. [2]	
	Expl thos	lain why electrical appliances with a metal casing require an earth lead whereas e with a plastic casing do not. [2]	

(3420UA0-1)

(b)	The	specific latent heat, L , of fusion of ice is 336000 J/kg.	Examiner only
	(i)	Explain what is meant by this statement. [2]	
	·····		
	(ii)	The ice block has a mass of 800 g. Its initial temperature is 250 K. Use equations from page 2 to calculate the energy required to raise its temperature to 273 K and completely melt the ice block at 273 K. The specific heat capacity, c , of ice is 2030 J/kgK. [5]	
		Energy = J	
			13

- 7. Wind turbines are mounted on towers to capture the most energy. They harness the wind's energy with their propeller-like blades. Wind turbines can be used as stand-alone applications, or they can be connected to the National Grid. For larger scale sources of wind energy, a number of wind turbines are built close together to form a wind farm. Several electricity providers today use wind farms to supply power to their customers.
 - (a) The power output from a wind turbine is not constant but depends on wind speed as shown in Graph 1.

The cut-in speed is the speed at which the turbine first starts to rotate and generate power. Somewhere between 12 and 15 m/s, the output power reaches the maximum limit. This limit is called the rated output power and the wind speed at which it is reached is called the rated output speed. As the speed increases the forces on the turbine structure continue to rise and, at some point, there is a risk of damage to the rotor. As a result, a braking system is employed to bring the rotor to a standstill. This occurs at the cut-out speed and is usually around 25 m/s.

© WJEC CBAC Ltd.

powe has	an input coil containing 400 turns and an output coil containing 4800 turns.	sformer
Use	equations from page 2 to answer the following questions.	
(i)	Calculate the output voltage of the transformer in kV.	[2]
		kV
(ii)	Calculate the output current of the transformer.	[3]
	Output current =	A
(i)	Explain the role of transformers in the National Grid.	[3]
•••••		
•••••		
••••••		
•••••		
	power has a the t (i) (ii)	 power of 24 MW. It is connected to the National Grid by a transformer. The tran has an input coil containing 400 turns and an output coil containing 4800 turns. It the transformer has an efficiency of 100%. Use equations from page 2 to answer the following questions. (i) Calculate the output voltage of the transformer in kV. Output voltage =

lestion mber	Additional page, if required. Write the question number(s) in the left-hand margin.	Exam onl
		•••••

© WJEC CBAC Ltd.

22

23

24

