| Surname                                     | Other na      | mes                            |
|---------------------------------------------|---------------|--------------------------------|
| Pearson<br>Edexcel GCE                      | Centre Number | Candidate Number               |
| Core Mat<br>Advanced Subsid                 |               | s C1                           |
|                                             |               |                                |
| Wednesday 17 May 201 Time: 1 hour 30 minute | •             | Paper Reference <b>6663/01</b> |

## Calculators may NOT be used in this examination.

## **Instructions**

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
  - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.

## Information

- The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
  - use this as a guide as to how much time to spend on each question.

## Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶



P48760A
©2017 Pearson Education Ltd.

1/1/1/1/1/



Leave blank

| 1. Find $\int \left(2x^5 - \frac{1}{4x^3} - 5\right) dx$ |     |
|----------------------------------------------------------|-----|
| giving each term in its simplest form.                   | (4) |
|                                                          |     |
|                                                          |     |
|                                                          |     |
|                                                          |     |
|                                                          |     |
|                                                          |     |
|                                                          |     |
|                                                          |     |
|                                                          |     |
|                                                          |     |

|                      | Leav<br>blanl | re<br>k |
|----------------------|---------------|---------|
| Question 1 continued |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      |               |         |
|                      | Q1            |         |
|                      |               |         |
| (Total 4 marks)      |               |         |



| $y = \sqrt{x} + \frac{4}{x} + 4$ | x > 0 |
|----------------------------------|-------|

2. Given

find the value of  $\frac{dy}{dx}$  when x = 8, writing your answer in the form  $a\sqrt{2}$ , where a is a rational number. (5)

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |

| Question 2 continued | blank |
|----------------------|-------|
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      | Q2    |
| (Total 5 marks)      |       |
| (20mi 5 marks)       |       |



Leave

**3.** A sequence  $a_1, a_2, a_3,...$  is defined by

$$a_1 = 1$$

$$a_{n+1} = \frac{k(a_n + 1)}{a_n}, \qquad n \geqslant 1$$

where k is a positive constant.

(a) Write down expressions for  $a_2$  and  $a_3$  in terms of k, giving your answers in their simplest form.

(3)

Given that  $\sum_{r=1}^{3} a_r = 10$ 

(b) find an exact value for k.

**(3)** 





| Overtion 2 continued |                 | Leave<br>blank |
|----------------------|-----------------|----------------|
| Question 3 continued |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 | Q3             |
|                      | (Total 6 marks) |                |
|                      | (Total o marks) |                |



| 4. | A company, which is making 140 bicycles each week, plans to increase its production. The number of bicycles produced is to be increased by $d$ each week, starting from 140 in week 1, to $140 + d$ in week 2, to $140 + 2d$ in week 3 and so on, until the company is producing 206 in week 12. |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (a) Find the value of $d$ . (2)                                                                                                                                                                                                                                                                  |
|    | After week 12 the company plans to continue making 206 bicycles each week.                                                                                                                                                                                                                       |
|    | (b) Find the total number of bicycles that would be made in the first 52 weeks starting from and including week 1.                                                                                                                                                                               |
|    | (5)                                                                                                                                                                                                                                                                                              |
|    |                                                                                                                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                                                                                                                  |



| Question 4 continued |                 | Leave<br>blank |
|----------------------|-----------------|----------------|
| Question 4 continued |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 | 0.4            |
|                      |                 | Q4             |
|                      | (Total 7 marks) |                |



- $f(x) = x^2 8x + 19$ 
  - (a) Express f(x) in the form  $(x + a)^2 + b$ , where a and b are constants.

**(2)** 

The curve C with equation y = f(x) crosses the y-axis at the point P and has a minimum point at the point Q.

(b) Sketch the graph of C showing the coordinates of point P and the coordinates of point Q.

**(3)** 

(c) Find the distance PQ, writing your answer as a simplified surd.

**(3)** 



|                      | Leave<br>blank |
|----------------------|----------------|
| Question 5 continued | Oldlik         |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      | Q5             |
| (Total 9 aulta)      |                |
| (Total 8 marks)      |                |
|                      |                |



Leave blank

**6.** (a) Given  $y = 2^x$ , show that

$$2^{2x+1} - 17(2^x) + 8 = 0$$

can be written in the form

$$2y^2 - 17y + 8 = 0$$

(2)

(b) Hence solve

$$2^{2x+1} - 17(2^x) + 8 = 0$$

**(4)** 

| Overtion ( continued |                 | Leave<br>blank |
|----------------------|-----------------|----------------|
| Question 6 continued |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 |                |
|                      |                 | 06             |
|                      |                 | <b>Q6</b>      |
|                      | (Total 6 marks) |                |



7. The curve C has equation y = f(x), x > 0, where

$$f'(x) = 30 + \frac{6 - 5x^2}{\sqrt{x}}$$

Given that the point P(4, -8) lies on C,

(a) find the equation of the tangent to C at P, giving your answer in the form y = mx + c, where m and c are constants.

**(4)** 

(b) Find f(x), giving each term in its simplest form.

**(5)** 

|                      |                  | Leave<br>blank |
|----------------------|------------------|----------------|
| Question 7 continued |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  |                |
|                      |                  | <b>Q</b> 7     |
|                      | (Total 9 marks)  |                |
|                      | (Total / mai ks) |                |



 $rac{y}{l_1}$   $rac{l_1}{l_2}$   $rac{l_2}{x}$ 

Not to scale

Figure 1

The straight line  $l_1$ , shown in Figure 1, has equation 5y = 4x + 10

The point P with x coordinate 5 lies on  $l_1$ 

The straight line  $l_2$  is perpendicular to  $l_1$  and passes through P.

(a) Find an equation for  $l_2$ , writing your answer in the form ax + by + c = 0 where a, b and c are integers.

**(4)** 

The lines  $l_1$  and  $l_2$  cut the x-axis at the points S and T respectively, as shown in Figure 1.

(b) Calculate the area of triangle SPT.

**(4)** 



|                      | Leave |
|----------------------|-------|
|                      | blank |
| Question 8 continued |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |



| Question 8 contin | iueu |  |  |
|-------------------|------|--|--|
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |
|                   |      |  |  |

| Question 8 continued | Leave blank |
|----------------------|-------------|
|                      |             |
|                      |             |
|                      |             |
|                      |             |
|                      |             |
|                      |             |
|                      |             |
|                      |             |
|                      |             |
|                      |             |
|                      |             |
|                      |             |
|                      |             |
|                      |             |
|                      |             |
|                      |             |
|                      |             |
|                      |             |
|                      |             |
|                      |             |
|                      |             |
|                      | <b>Q8</b>   |
| (Total 8 marks)      |             |
|                      |             |



- 9. (a) On separate axes sketch the graphs of
  - (i) y = -3x + c, where c is a positive constant,

(ii) 
$$y = \frac{1}{x} + 5$$

On each sketch show the coordinates of any point at which the graph crosses the *y*-axis and the equation of any horizontal asymptote.

**(4)** 

Given that y = -3x + c, where c is a positive constant, meets the curve  $y = \frac{1}{x} + 5$  at two distinct points,

(b) show that  $(5 - c)^2 > 12$ 

**(3)** 

(c) Hence find the range of possible values for c.

**(4)** 

| Question 9 continued | blank |
|----------------------|-------|
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |



Leave

Leave blank

| uestion 9 continu |  |  |
|-------------------|--|--|
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |
|                   |  |  |

| Question 9 continued | blank |
|----------------------|-------|
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      | Q9    |
| (Total 11 marks)     |       |



Leave



Figure 2 shows a sketch of part of the curve  $y = f(x), x \in \mathbb{R}$ , where

$$f(x) = (2x - 5)^2(x + 3)$$

- (a) Given that
  - (i) the curve with equation y = f(x) k,  $x \in \mathbb{R}$ , passes through the origin, find the value of the constant k,
  - (ii) the curve with equation y = f(x + c),  $x \in \mathbb{R}$ , has a minimum point at the origin, find the value of the constant c.

**(3)** 

(b) Show that  $f'(x) = 12x^2 - 16x - 35$ 

**(3)** 

Points A and B are distinct points that lie on the curve y = f(x).

The gradient of the curve at A is equal to the gradient of the curve at B.

Given that point A has x coordinate 3

(c) find the x coordinate of point B.

**(5)** 

| Question 10 continued | Leave<br>blank |
|-----------------------|----------------|
| Question to continued |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |



Leave blank

| Question 10 c |  |  |  |
|---------------|--|--|--|
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |

|                       | Leav |
|-----------------------|------|
|                       | blan |
| Question 10 continued |      |
|                       |      |
|                       | -    |
|                       | _    |
|                       |      |
|                       | -    |
|                       | _    |
|                       |      |
|                       | -    |
|                       | _    |
|                       |      |
|                       | -    |
|                       | _    |
|                       |      |
|                       | -    |
|                       | _    |
|                       |      |
|                       | -    |
|                       |      |
|                       | -    |
|                       | -    |
|                       |      |
|                       | -    |
|                       | _    |
|                       |      |
|                       | -    |
|                       | _    |
|                       |      |
|                       | -    |
|                       | _    |
|                       |      |
|                       | -    |
|                       | _    |
|                       |      |
|                       | -    |
|                       | _    |
|                       |      |
|                       | -    |
|                       | _    |
|                       |      |
|                       | -    |
|                       | _    |
|                       |      |
|                       | -    |
|                       | _    |
|                       |      |
|                       | -    |
|                       | _    |
|                       |      |
|                       | -    |
|                       |      |
|                       | -    |
|                       | -    |
|                       |      |
|                       | -    |
|                       |      |

