

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

A-level **BIOLOGY**

Paper 3

Monday 26 June 2017

Morning

Time allowed: 2 hours

Question

TOTAL

Materials

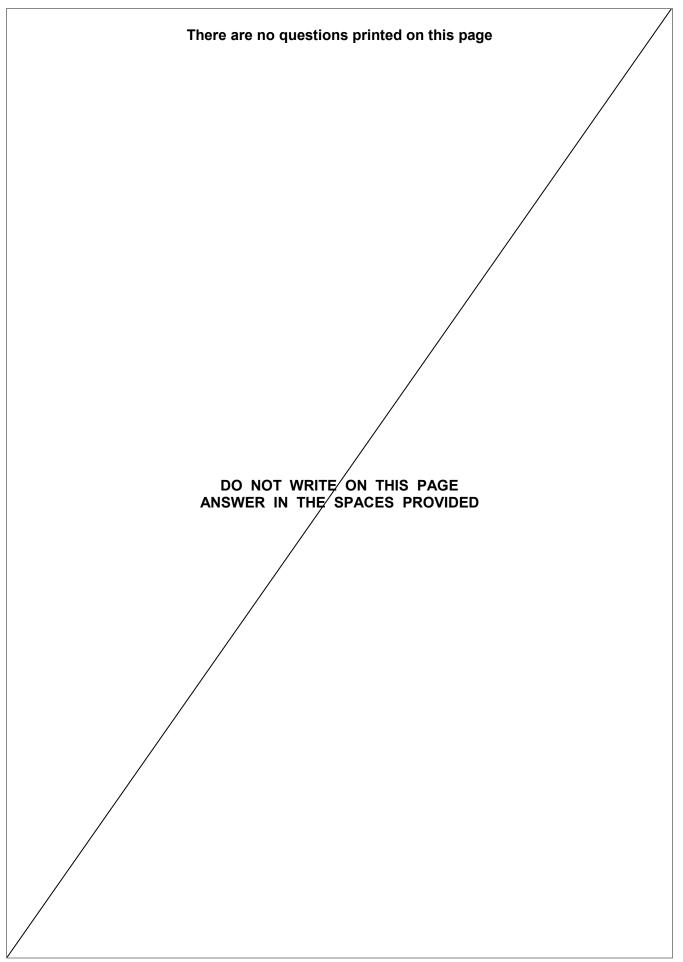
For this paper you must have:

- a ruler with millimetre measurements
- a scientific calculator.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in Section A.
- Answer one question from Section B.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All work must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

2 3 4 5 6 7

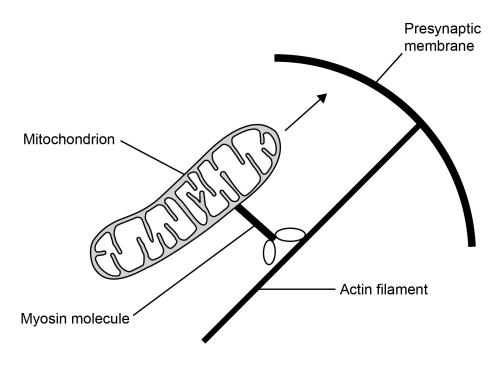

For Examiner's Use

Mark

Information

- The marks for the questions are shown in brackets.
- The maximum mark for this paper is 78.

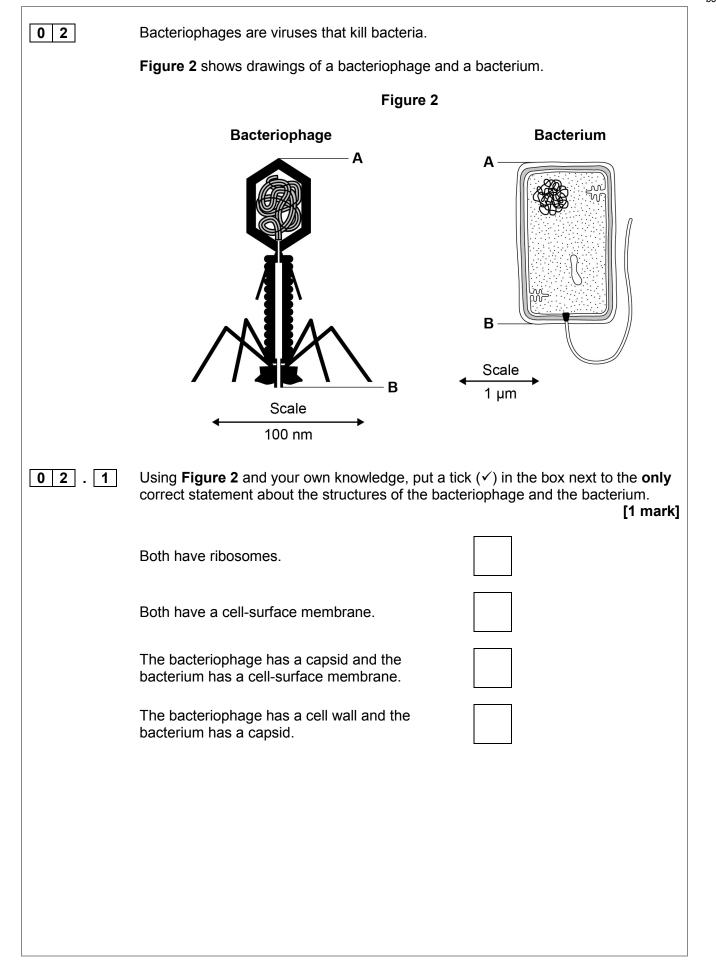
marks]
marks]



 $\fbox{ \ \ \, 0\ \ \, 1\ \ \, }$. $\fbox{ \ \ \, 2\ \ \, }$ The presynaptic knob contains actin filaments and myosin molecules.

The myosin molecules can attach to mitochondria and move them towards the presynaptic membrane, as shown in **Figure 1**.

Figure 1


Use your knowledge of how myosin and actin interact to suggest how the myosin molecule moves the mitochondrion towards the presynaptic membrane.

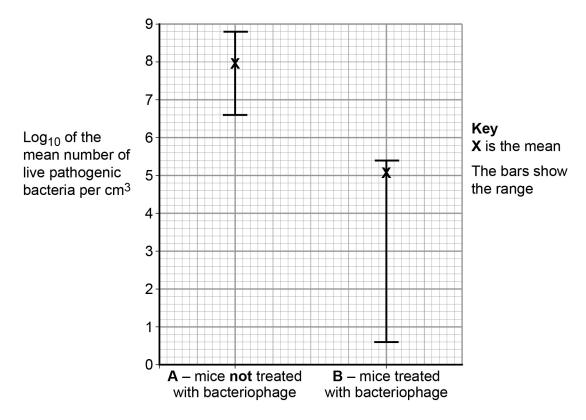
Do not include the roles of calcium ions and tropomyosin in your answer	ver. [2 marks]	

0 1 . 3	This movement of mitochondria happens when nerve impulses arrive at the synapse.						
	Suggest and explain one advantage of the movement of mitochondria towards the presynaptic membrane when nerve impulses arrive at the synapse.						
	[2 marks]						

Turn over for the next question

0 2 . 2	Using the scales in Figure 2 , calculate how many times longer the bacterium is than the bacteriophage.
	Use the distance between the points labelled A and B on each drawing in your calculations. Show your working. [2 marks]
	L
	The bacterium is times longer
	title bacterium is titles longer
	Question 2 continues on the next page

0 2 . 3


Scientists investigated the use of bacteriophages to treat lung infections caused by bacteria. They infected the lungs of mice with a pathogenic species of bacterium. The mice were then divided into two groups, **A** and **B**.

- The mice in group **A** were **not** treated with bacteriophage.
- The mice in group **B** were treated by breathing in a spray containing bacteriophage particles.

After 3 days, the scientists killed the mice and removed their lungs. They washed out each set of lungs with a set volume of liquid. The scientists determined the number of live bacteria in the liquid.

Figure 3 shows the scientists' results. **Figure 3** shows the mean and the range of the data about the mean for each group. Standard deviations of the means are **not** shown.

Figure 3

۷	۷hat	would	the	scientists	null	hy	poth	iesis	be	tor	this	inves	tıga	tion	•

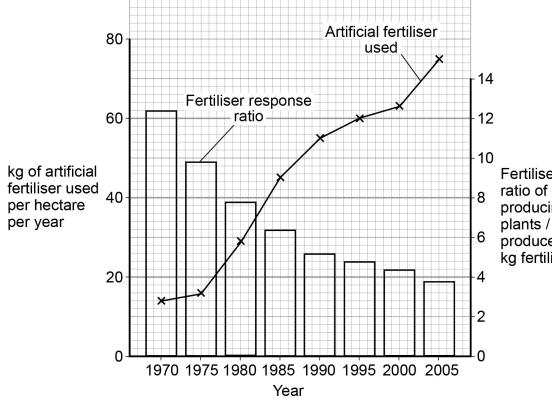
[1 mark]

0 2 . 4	With some samples, the scientists decided they needed to carry out a series of dilutions of the sample before counting the bacteria.				
	Use evidence from Figure 3 to explain why dilutions were necessary for samples but not for others.	some			
	samples but not for others.	[2 marks]			
0 2 . 5	Using only Figure 3 , what can you conclude from these data about the effectiveness of the bacteriophage in treating this lung infection in mice?				
	Do not consider statistical analyses in your answer.	[2 manuka]			
		[3 marks]			

9

- **0 3** Farmers use artificial fertilisers to maintain or increase yield from grain-producing crop plants such as wheat.
- 0 3 . 1 Artificial fertiliser is used to replace mineral ions removed from the land when crops are harvested. One of the mineral ions is nitrate.

Give **two** examples of biological molecules containing nitrogen that would be removed when a crop is harvested.


[2 marks]

1			
2			

O 3 . 2 Scientists investigated changes in the use of artificial fertiliser in India between 1970 and 2005. They also investigated changes in the **fertiliser response ratio**. This ratio shows how many kg of grain are produced for each kg of fertiliser used.

Figure 4 shows their results in the form the scientists presented them. (A hectare is a unit of area commonly used in agriculture)

Figure 4

Fertiliser response ratio of grainproducing crop plants / kg grain produced for each kg fertiliser used

	Use these data to calculate the difference in the mass of grain produce hectare in 1970 compared with 2005.	ed per
	Show your working.	[2 marks]
	Difference	_ kg hectare ⁻¹
0 3 . 3	Use the data in Figure 4 to evaluate the use of artificial fertilisers on grain-producing crops in India.	[2 marks]
	Turn over for the next question	

0 4

Ecologists investigated changes in grassland communities on large islands off the coast of Scotland between 1975 and 2010. On each island, they used data from a number of sites to determine the change in mean species richness and the change in mean index of diversity.

0 4 . 1

Table 1 shows plant species recorded at one site, on one island, in 1975.

Table 1

Species	Number of individuals
Hydrocotyle vulgaris	3
Plantago maritima	19
Ranunculus acris	3
Hieracium pilosella	3
Calliergon cuspidatum	10
Prunella vulgaris	16
Pseudoscleropodium purum	6

Calculate the index of diversity for this site using the formula:

$$d = \frac{N(N-1)}{\sum n(n-1)}$$

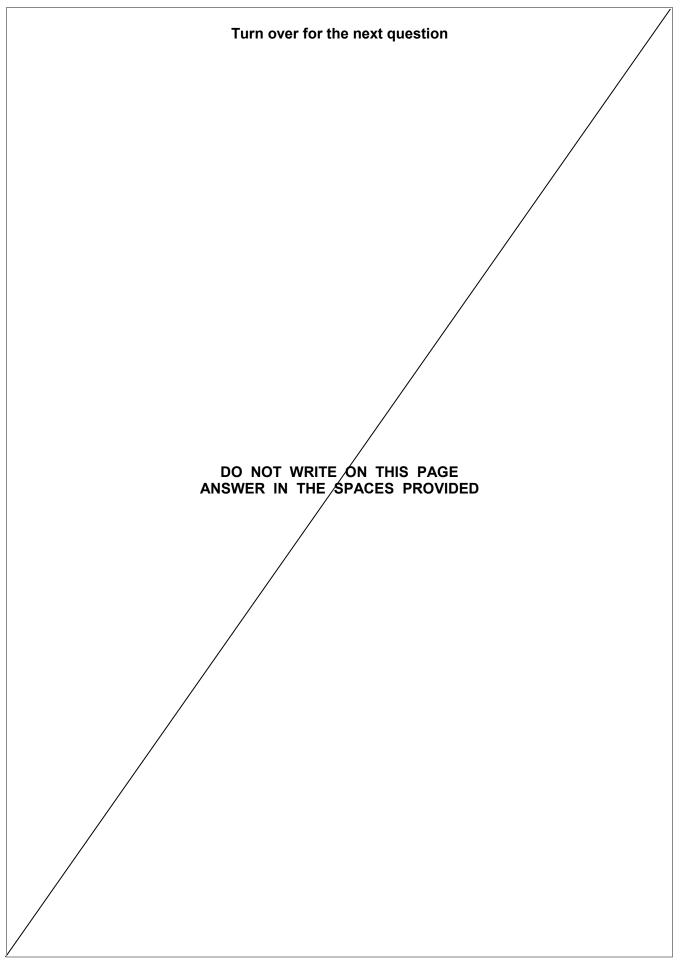
[2 marks]

0 4 . 2	Outline a method the ecologists could have used to determine the plant srichness at one site.	pecies
	Thorntose at one site.	[3 marks]
	Question 4 continues on the next page	

0 4 . 3

Some of the ecologists' results are shown in **Table 2**. They carried out a statistical test to find out whether any differences between the 1975 and 2010 means were significant. The values for P that they obtained are also shown in **Table 2**.

Table 2


Island	Change in mean species richness between 1975 and 2010	Value of P	Change in mean index of diversity between 1975 and 2010	Value of P
Islay	+8.89	≤0.001	+0.22	>0.05
Colonsay	+14.70	≤0.001	+2.68	≤0.01
Harris	-5.13	≤0.001	-2.44	≤0.01

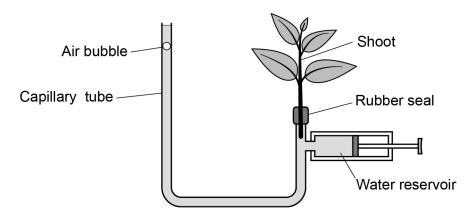
Do these data show that there were any significant changes in the grassland

communities on these islands?	Give reasons for your answer.	[3 marks]

Ö

0 5 . 1	Name two enzymes involved in the semi-conservative replication of DNA. [2 mar]	ks]
	1	
	2	
0 5 . 2	Sometimes, damage occurs during DNA replication. One enzyme involved in repairing damage to DNA is called ATR.	
	ATR works as follows.	
	 ATR phosphorylates other enzymes involved in repairing DNA. ATR also phosphorylates substrates required to repair DNA. 	
	When ATR phosphorylates other enzymes, these enzymes become able to bind their substrates.	to
	Use your knowledge of enzyme structure to suggest why. [2 markspace of the content of the conte	ks1
	L	•

	Turn over for the next question
	What can you predict about the possible effects of having a non-functional form of ATM? [3 marks]
	A mutation could result in a person having non-functional forms of the gene that produces ATM.
0 5 . 4	Sometimes, a mutagenic agent causes DNA to break. A different enzyme called ATM binds to the broken DNA. This leads to the activation of a protein coded for by a tumour suppressor gene. The effect of ATM binding is to stop cell division until DNA is repaired.
	[1 mark]
	Use your knowledge of energy changes in enzyme-catalysed reactions to suggest why.
0 5 . 3	The enzyme-catalysed reactions activated by ATR only occur if the substrates have been phosphorylated.



8

0 6

A student used a potometer to measure the movement of water through the shoot of a plant. The potometer is shown in **Figure 5**. As water is lost from the shoot, it is replaced by water from the capillary tube.

Figure 5

0 6 . 1 In one experiment, the air bubble moved 7.5 mm in 15 minutes. The diameter of the capillary tube was 1.0 mm.

Calculate the rate of water uptake by the shoot in this experiment.

Give your answer in mm³ per hour. Show your working. (The area of a circle is found using the formula, area = πr^2)

[2 marks]

	mm^3	hour ⁻¹
--	---------------	--------------------

0 6 . 2	The student wanted to determine the rate of water loss per mm ² of surface area of the leaves of the shoot in Figure 5 .
	Outline a method she could have used to find this rate. You should assume that all
	water loss from the shoot is from the leaves. [3 marks]
0 6 . 3	The rate of water movement through a shoot in a potometer may not be the same as the rate of water movement through the shoot of a whole plant.
	Suggest one reason why.
	[1 mark]
	[Extra space]

0 6 . 4	Aquaporins are channel proteins that allow the diffusion of water across membranes. One type of aquaporin, called PIP1, can also transport carbon dioxide molecules across membranes.
	Figure 6 shows the structure of a water molecule and of a carbon dioxide molecule. They are drawn to the same scale.
	Figure 6
	O C O
	Water molecule Carbon dioxide (H ₂ O) molecule (CO ₂)
	Suggest two reasons why water molecules and carbon dioxide molecules can both pass through PIP1.
	[2 marks]
	[Extra space]
	2
	[Extra space]

0 6 . 5	The scientists first produced transgenic poplar trees. These trees all had a length of foreign DNA inserted into them. This DNA led to the production of single-stranded RNA that specifically inhibited expression of the gene for PIP1.
	The scientists then measured the difference in the amount of PIP1 in leaves of transgenic poplars and in leaves of wild type poplars without the foreign DNA. The amount of PIP1 in the transgenic poplars was approximately 15% of that in the wild type poplars.
	Using this information, what can you conclude about the effect of the foreign DNA in the transgenic poplar trees?
	[3 marks]
	The transgenic poplars still produced some PIP1.
0 6 . 6	Suggest why.
	[1 mark]
	Question 6 continues on the next page

0 6 . 7 The scientists investigated the importance of PIP1 in the movement of water and carbon dioxide through the tissues of leaves of poplar trees. They measured the mean rates of movement of carbon dioxide and water through the tissues of leaves of transgenic poplars and through the tissues of leaves of wild type poplars. Their results are shown in Figure 7. Figure 7 Key Carbon Water dioxide The bars show ±1 standard deviation Mean rate of Mean rate of movement of movement of carbon dioxide water Transgenic Wild type Poplar

Using only Figure 7 , evaluate the importance of PIP1 in the movement of dioxide and water through leaves of poplar trees.	
aloxide and water unough leaves of popular trees.	[3 ma

Turn over for the next question

15

	Section B Answer one question.	
0 7	Write an essay on one of the topics below.	
	EITHER	
0 7 . 1	The importance of nitrogen-containing substances in biological systems.	[25 marks]
	OR	
0 7 . 2	The importance of diffusion in organisms.	[25 marks]

-	

-	

END OF QUESTIONS

Copyright Information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 AQA and its licensors. All rights reserved.

25