

Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCE in Statistics S1 (6683/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016 Publications Code **6683_01_1606_MS** All the material in this publication is copyright © Pearson Education Ltd 2016

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

June 2016 6683 STATISTICS 1 Mark Scheme

Question Number	Scheme	Marks
1. (a)	$S_{dw} = 13833 - \frac{"1960" \times 33.6}{8} \underline{\text{or}} 13833 - \frac{65856}{8} \text{ (But } 13833 - 8232 \text{ is M0)} \\ = \underline{5601} (*)$	M1 A1 cso
(b)	w, since the number of wiggles depends on the distance $\underline{or} w$ depends on d	(2) B1 (1)
(c)	$r = \frac{5601}{\sqrt{394600 \times 80.481}}, = 0.99389$ awrt <u>0.994</u>	M1,A1
(d)	$b = \frac{5601}{394600}, = 0.014194$ (awrt 0.014)	(2) M1, A1
	$a = \frac{33.6}{8} - "0.01419" \times \frac{"1960"}{8} = 4.2 - "0.01419" \times 245 \ [= 0.72244]$ $w = 0.722 + 0.0142d$	M1 A1
(e)	(i) $[0.722 + 0.0142 \times 350 =]$ (ii) Reliable since 350 m is in the range of the data awrt: <u>5.7</u> or <u>5.6</u>	(4) B1 B1 (2) [11 marks]
	Notes	
(a) (b)	M1for clear attempt to find Σd and use in a correct formula. Accept $1300 < \Sigma d < 2500$ For the M1 we can condone a single slip e.g. using 1383 instead of 13833 etcA1csofor correct Σd and 5601 only. Must see the formula and so have scored M1B1Must select w (or wiggles) and reason based on the idea that w is dependent on d	
	Allow w "changes according to"/ "is determined/affected by" Must mention B0 for "w is measured" or "d is explanatory/indep't" or "w can't be controlled" or "w	on w and d
(c)	M1 for a correct expression (Allow ft of their incorrect S_{dw}) A1 for awrt 0.994 (Answer only 2/2) [Answer only of 0.99 scores M1A	A0]
(d)	1 st M1 for a correct expression for <i>b</i> . (Allow ft of their incorrect S_{dw}) 1 st A1 for awrt 0.014 No fractions. [Answer only 2/2] Can be given at final equation. [Must come from correct formula <u>not</u> gradient of line from e.g. (650, 9.555) to (30, 0.725)] 2 nd M1 for a correct method for <i>a</i> . Follow through their value of <i>b</i> and their Σd 2 nd A1 for a correct equation for <i>w</i> and <i>d</i> with <i>a</i> = awrt 0.722 and <i>b</i> = awrt0.0142 No fractions Equation in <i>x</i> and <i>y</i> is A0 Answer only 4/4	
(e)	 1st B1 for awrt 5.7 or awrt 5.6 2nd B1 for a reason citing 350 (m) or mentioning <i>d</i> is in the range of the da reliable. Allow "Interpolation (or not extrapolation) therefore relias Saying "5.7 (or <i>w</i> or just "it") is in the range" is B0 "accurate" instead of "reliable" is correlation" (without mention of interpolation o.e.) is B0 Apply ISW if a correct correct content of the set of	able". s B0 "strong

Question Number	Scheme	Marks
2. (a)	p + q + 0.2 + 0.3 + p = 1 or $2p + q = 0.5$ (o.e.)	B1
(b)	$\begin{bmatrix} E(X) = \end{bmatrix} -2p - q + \frac{1}{2} \times 0.2 + \frac{3}{2} \times 0.3 + 2p [= 0.4] \underline{\text{or}} - q + 0.1 + 0.45 [= 0.4]$ $\underline{q = 0.15}$	(1) M1A1 A1 (2)
(c)	2p + "0.15" = 0.5 (o.e) <u>$p = 0.175$</u>	$ \begin{array}{c} (3) \\ M1 \\ A1 \end{array} $
(d)	$[Var(X) =] 2.275 - (0.4)^{2} = 2.115 $ (Accept 2.12)	(2) M1 A1
(e)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(2) M1 dM1
	$= 0.6 - q = 0.45 (\text{ or } \frac{9}{20})$	A1ft
(f)(i)	S > R when $x = 1.5$ and 2 P(Sarah wins) = $0.3 + p = 0.475$ (or $\frac{19}{40}$)	(3) M1 A1ft
(ii)	$R > S$ when $x = -2$ and $\frac{1}{2}$ or $r = -\frac{1}{2}$ and 2	M1
	P(Rebecca wins) = $0.2 + p = 0.375$ (or $\frac{15}{40}$)	A1ft (4) [15 marks]
	Notes	
(a) (b)	B1 for any correct equation based on sum of probs. = 1 Correct answer only in (b), (c), (d), (e) or (f) scores full marks for that part. M1 for an attempt at an expression based on $E(X)$. At most 2 errors or omissions. 1 st A1 for a correct <u>equation</u> [May be implied by a correct answer] 2 nd A1 for $q = 0.15$ or exact equivalent e.g. $\frac{6}{40}$	
(c)	M1 for correct equation or using their equation from (a) with their q, prov A1 for $p = 0.175$ or exact equivalent e.g. $\frac{7}{40}$	vided $q \in [0,1]$
(d)	M1 for a correct numerical expression <u>but</u> M0 if followed by division by A1 for 2.115 or accept awrt 2.12 (also accept exact equivalent e.g. $\frac{423}{200}$)	k (e.g. k = 5)
(e)	1 st M1 for correct values for <i>R</i> , allow 1 error, and allow unsimplified. Condone no label if not used as probabilities. If seen in table on QP allow, but <u>must</u> be labelled. Just writing the sum Σ <i>r</i> is M0 but adding later can score 1 st M1 2 nd dM1 dependent on 1 st M1 for an attempt at an expression based on E(<i>R</i>), ft <i>p</i> and <i>q</i> , (if probabilities) ft their <i>r</i> values. At least 3 correct (or correct ft) products seen. A1ft for 0.45 or (0.6 – their <i>q</i>) provided <i>q</i> is a probability Answers for (f) must be clearly labelled or take 1st as (i) and 2nd as (ii)	
(f)(i)	M1 for identifying the correct values of X A1ft for 0.475 or 0.3 + their p , provided answer is a probability	
(ii) SC1 X ₁ ,X ₂	M1 for identifying the correct values of X or R A1ft for 0.375 or 0.2 + their p or 1 – their 0.475 – their q, provided ans. They use two values of X: (i) for $P(S > R) = 0.445$ (B1) (ii) for $P(R > S) = 0.445$	1 *
SC1 A1,A2 SC2 swap Epen	Answers wrong way round: (i) $P(S > R) = 0.375 \text{ and (ii) } P(R > S) = 0.475 (B1) (B1) (B1) (B2) (B1) (B1) (B1) (B2) (B1) (B1) (B1) (B2) (B1) (B1) (B1) (B1) (B1) (B1) (B1) (B1$) No ft

Question Number	Scheme	Marks
3 .(a)		
	$[\sigma_x^2 =] \frac{985.88}{8} - \left(\frac{86.8}{8}\right)^2 = \frac{985.88}{8} - 10.85^2$	M1
	$\sigma_x = \sqrt{\frac{985.88}{8} - \left(\frac{86.8}{8}\right)^2} = \sqrt{123.235 - 117.7225} = \sqrt{5.5125} \text{or} \sqrt{\frac{44.1}{8}}$	A1
	= 2.3478 = awrt 2.35	A1 (3)
(b)	$S_{yy} = 8 \times \sigma_y^2 = 716 (3 \text{ sf}) \text{ but may see}$	
	1136.584 - $\frac{58^2}{8}$ or 27628(.084168) - $\frac{464^2}{8}$ or 716.08 (= 716 to 3 sf) (*)	B1cso
		(1)
(c)	$S_{xy} = 4900.5 - 58 \times 86.8$ <u>or</u> $4900.5 - \frac{86.8 \times 464}{8}$	M1
	= -133.9 (Allow - 134)	A1
		(2)
(b)	$r = \frac{-133.9}{\sigma_x \times \sigma_y}$ or $\frac{-133.9}{\sqrt{44.1 \times 716}}$	M1
(u)	$\gamma = \frac{1}{\sigma_x \times \sigma_y}$ or $\frac{1}{\sqrt{44.1 \times 716}}$	1011
	= awrt - 0.753 or -0.754	A1
	r < 0 means high sunshine and low rain; this is high sunshine high rain	(2) B1
(e)	[this is not in keeping with the trend so] r is closer to 0 or $ r $ decreases	B1
		(2)
	Notes	[10 marks]
(a)	M1 for a correct expr' for st. dev or variance (ignore label)[may be implied by 2	2.35 or 5.5125]
	1 st A1 for a correct expression for st. dev (must have square root) can ignore	label
	2^{nd} A1 for awrt 2.35 (allow $s = 2.5099$ or awrt 2.51). If they have $\sigma^2 = 2.3$ condone no label	35 score A0 but
(b)	B1cso for a correct expression <u>or</u> sight of at least 716.08 (NB limits: 716 Do not allow verification. Beware circular arguments: $716 \rightarrow \Sigma y^2 \rightarrow$	· · · · ·
(c)	M1 for a correct expression for S_{xy} (NB $\Sigma y = 464$)	
	A1 for -133.9 or awrt -134 [No fractions] (Answer only 2/2)	
(b)	M1 for a correct expression for r (ft their values for S_{xy} and σ_x or S_{xx})[A	Allow ft of S_{1}
(d)	A1 for awrt -0.753 or -0.754 (Answer only 2/2)	
(e)	If they do not have an answer to (d) or their value of r is > 0 or $ r > 1$ so 1^{st} B1 for a suitable reason contradicting $r < 0$ e.g. new value is not in keep	
	or both $14 > \overline{x}$ and $70 > \overline{y}$ or saying both above average. Allow for $-0.48 <$	
	2^{nd} B1 for a correct statement about <i>r</i> getting closer to zero e.g. $ r $ decreases	
	A comment that r decreases $\underline{\text{or }} r$ is smaller $\underline{\text{or }} r$ is "less negative" is	B0
	" <i>r</i> increases" is B0 <u>unless</u> they also say that it gets closer to 0	

Question Number	Scheme	Marks
4. (a)	$[P(B \cap R') =] \underline{0}$	B1 (1)
(b)	$P(B) = 0.27 + 0.33 = 0.6, P(D) = 0.27 + 0.15 + t, P(B \cap D) = 0.27$ $[P(B) \times P(D) = P(B \cap D) \text{ gives}] \qquad 0.6 \times (0.42 + t) = 0.27$	(1) M1 M1
	$0.42 + t = \frac{0.27}{0.6} \underline{\text{or}} 0.6t = 0.018$	Al
	$\begin{array}{c} 0.6 \\ t = 0.03 \end{array}$	A1
(c)	[u =] 1 - (0.6 + 0.15 + t) u = 0.22	(4) M1 A1ft (2)
(d)(i)	$\left[\frac{P(D \cap R \cap B)}{P(R \cap B)}\right] = \frac{0.27}{0.27 + 0.33} \underline{\text{or}} \qquad P(D \mid R \cap B) = P(D \mid B) = P(D)$	(2) M1
	= <u>0.45</u>	A1
(ii)	$\left[\frac{P(D \cap [R \cap B'])}{P(R \cap B')}\right] = \frac{0.15}{0.15+u}$	M1
	$=\frac{15}{37}$	A1
(e)	15	(4) M1
	$=\underline{33}$	A1
		(2) [13 marks]
	Notes	
(b)	1 st M1 for attempting 3 suitable probabilities, one involving <i>t</i> (at least 2 cone.g. sight of 0.6, 0.27, 0.42 + <i>t</i> correctly labelled in terms of <i>B</i> , <i>D</i> , <i>R</i> or in a contract May see e.g. $P(B D) = \frac{0.27}{0.42 + t}$	rrect) prrect equation.
	2^{nd} M1 for using the independence to form a linear equation in t. ft their properties 1^{st} A1 for solving leading to a correct equation as far as $p + t = q$ or $pt = 2^{nd}$ A1 for 0.03 or exact equivalent	
(c)	M1 for a correct expression for u . Allow their t or just letter t in a correct A1ft for 0.22 (or exact equivalent) or ft their t . i.e. $u = 0.25 - t$ provided Can score M1A1ft provided their u + their $t = 0.25$ where u and t are	u & t are probs
(d)(i)	M1 for a correct numerical ratio of probabilities	
(ii)	 A1 for 0.45 or exact equivalent (Answer only 2/2) M1 for a correct numerical ratio of probabilities, ft their <i>u</i>, provided <i>u</i> is 	a nrobability
(11)	A1 for $\frac{15}{37}$ or 0.405 or allow awrt 0.41 following a correct expression	
(e)	M1 for a correct method for <u>both</u> 18 and 15 ft their 0.45 and their $\frac{15}{37}$ provid NB P(D)×77 is M0 A1 for 33 only	ded both in [0,1]
	NB $\frac{27}{33} \times 40 = 32.7$ which rounds to 33 but scores M0A0. (Ans only sen	d to review)

Question Number	Scheme	Marks	5
5.(a)	Width = $\underline{0.5}$ (cm) e.g 4 [cm ²] represents 8 babies <u>or</u> frequency densities are 8 <u>and</u> 34 Height = $\underline{17}$ (cm)	B1 M1 A1	(2)
(b)	$[Q_2 =] \{3\} + \frac{(25-9)}{(26-9)} \times 0.5, \underline{\text{or}} \{3.5\} - \frac{(25-24)}{(41-24)} \times 0.5 = \text{awrt } \underline{3.47} \text{ (allow } \frac{59}{17}\text{)}$	M1, A1	(3)(2)
(c)(i)	$\sum fx = 1 \times 1 + 2.5 \times 8 + 3.25 \times 17 + 3.75 \times 17 + 4.5 \times 7 = 171.5, \ \overline{x} = \frac{171.5}{50} = (3.43) \ (*)$	B1cso	(2)
(ii)	$\sqrt{\frac{611.375}{50} - 3.43^2}$,= 0.680147 = awrt <u>0.680</u> (Accept 0.68)	M1, A1	
(d)	$[P(W < 3) = P\left(Z < \frac{-0.43}{0.65}\right)] = P(Z < -0.6615)$	M1	(3)
	$= 1 - 0.7454 \text{ (tables)} \\= 0.2546 \text{ awrt } 0.254 \text{~} 0.255$	M1 A1	(3)
(e)	(b) and (c)(i) mean \neq med or skew <u>or</u> mean <u>~</u> median or no skew and comment (d) = 0.254 or 0.255 compare data = 0.18 (or 12.7 compared with 9) 0.18 different from 0.25 so normal not good <u>or</u> 0.18 similar to 0.25 so normal is OK	B1 B1 dB1	
(f)(i) (ii)	No change in mean (since weight is the same) s.d. will decrease (Extra value is at "centre" so data more concentrated) Both statements correct <u>and</u> correct reasons for <u>each</u>	B1 B1 dB1 [17 ma 1	(3) (3) •ks]
	Notes	[
(a)	M1 for clear representation of area with frequency <u>or</u> height \times width = 8.5 A1 for 17 (cm) [Must be clear it is height not frequency] (Ans only must satisfy the set of the	sfy $h \times w =$	8.5)
(b)	M1 for $\frac{16}{17} \times 0.5$ or if using $n + 1$ for $\frac{16.5}{17} \times 0.5$ May see $-\frac{1}{17} \times 0.5$ if working		
	A1 for awrt 3.47 (or $\frac{59}{17}$) [check from correct working] or (if using $(n + 1)$ for 3.48		
(c)(i)	B1cso for Σfx (at least 3 correct & no incorrect products seen) and correct $\frac{\sum}{50}$	$\frac{1}{1}$ or $\frac{1}{5}$	$\frac{c}{c}$
(ii)	$\begin{array}{ccc} 50 & 50 \\ M1 & \text{for a correct expression including square root. Must use 3.43 no ft} \\ A1 & \text{for awrt 0.680 (accept 0.68). Allow use of } s = awrt 0.687 (Ans only 2/2) \end{array}$		
(d)	1^{st} M1for an attempt to standardise with 3, 3.43 and 0.65. Allow \pm and also use of their sd 2^{nd} M1for $1 - p$ where $0.74 NB calculator gives 0.7458665A1for awrt 0.254 or 0.255$		r sd
(e)	1^{st} B1 for a statement about mean/median and compatible comment about nor 2^{nd} B1 for statement comparing their (d) with data (sight of 0.18 or 12.7 and 9 3 3 rd dB1 dep on 2 rd B1 for conclusion about normal compatible with 2^{nd} statemed	required)	
(f)(i) (ii)	 1st B1 for no change in mean {send a correct argument for <u>decrease</u> to review} 2nd B1 for s.d. decreases 3rd dB1 dep on 1st and 2nd Bs for a correct reason for <u>both</u> mean <u>and</u> sd e.g. "new mean the same so within 1 s.d. of old mean" 		

Question Number	Scheme	Marks
6.(a)	[$T \sim N (240, 40^2)require P(T > 300)$] P $\left(Z > \frac{300 - 240}{40}\right)$	M1
	$=1-P(Z < 1.5) \text{ or } 1-0.9332$ $= \text{awrt } \underline{0.0668} \text{ or } 6.68\%$	M1 A1 (3)
(b)	$\left[P(T < n) = 0.20 \Longrightarrow \right] \frac{n - 240}{40} = -0.8416$	M1 B1
	n = awrt <u>206</u> minutes	A1 (3)
(c)	$[P(W < \mu - 30 W < \mu) =] \frac{P(W < \mu - 30)}{P(W < \mu)}$	M1
	$=rac{1-0.82}{0.50}$	A1
	= <u>0.36</u>	A1cao (3) [9 marks]
	Notes	
(a) (b)	1^{st} M1for standardising with 300, 240 and 40. May be implied by use of 1. 2^{nd} M1for $1 - P(Z < "1.5")$ i.e. a correct method for finding $P(Z > "1.5")$ e.g. $1 - p$ where $0.5 A1for awrt 0.0668(Answer only 3/3)M1for an attempt to standardise with 240, 40 and n and set = \pm z (0.8 < z <B1for z = \pm 0.8416 (or better) used as a z value. Do not allow for 1 - 0.8416$	0.9)
Angoniy	Calc gives 0.8416212[May be implied by awrt 206.34 , give B1 as we A1 for awrt 206 (can be scored for using a <i>z</i> value of 0.84 or even 0.85) Must follow from correct working but a range of possible <i>z</i> values are OI If answer is awrt 206 score M1B0A1 (unless of course z = 0.8416 seen) but awrt 20	ll as A1 if seen] K
Ans only	If answer is a writ 200 score with $DOAT$ (unless of course $z = 0.8410$ seen) but a writ 20	10.54 Scores 5/5
(c)	M1 for the correct ratio expression (Not $P([W < 30 - \mu] \cap [W < \mu])$ on nu Condone use of Z instead of W <u>only if</u> they later get a correct numerical ratio However they may write $P(Z < \frac{-30}{\sigma})$ etc which is of course fine 1 st A1 for a correct numerical ratio	
Use tables ALT	May see use of $z = 0.92$ or better (calc: 0.9153650) or $\sigma = 32.6 \sim 32.8$ 1^{st} M1 for $\frac{P(Z < -0.92)}{P(Z < 0)}$ and 1^{st} A1 for $\frac{1 - 0.8212}{0.5}$ or $\frac{0.1788}{0.5}$ 2^{nd} A1 for 0.36 or an exact equivalent e.g. $\frac{9}{25}$ (Answer only M1A1A0)	
	The final answer of 0.36 <u>must</u> come from exact values; 0.36 rounded from 0.	3576 etc 1s A0

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom