Oxford Cambridge and RSA

GCE

Physics A

Unit G481: Mechanics
Advanced Subsidiary GCE

Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations available in RM Assessor

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
*	Incorrect response
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
TE	Transcription error
NBOD	Benefit of doubt not given
POT	Power of 10 error
ค	Omission mark
SF	Error in number of significant figures
\checkmark	Correct response
2	Wrong physics or equation

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
(1)	alternative and acceptable answers for the same marking point
reject	Separates marking points
not	Answers which are not worthy of credit
IGNORE	Answers which are not worthy of credit
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Olternative wording
ORA	

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.
B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the \mathbf{C}-mark is given.

A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

Note about significant figures:

If the data given in a question is to 2 sf, then allow to 2 or more significant figures.
If an answer is given to fewer than 2 sf , then penalise once only in the entire paper.
Any exception to this rule will be mentioned in the Additional Guidance.

Q 1	Answer	Marks	Guidance
(a)	(Acceleration =) rate of change of velocity	B1	Allow: Equations $a=\frac{v-u}{t}$ and $a=\frac{\Delta v}{t}$ as long as labels, $v, u, \Delta v$ and t are defined. Not: 'speed' instead of 'velocity'
(b)	It has direction (and magnitude)	B1	Must use ticks on Scoris to show where the marks are awarded \mathfrak{Q} 'direction' must be spelled correctly to gain the mark.
(c)(i)	1 Increasing acceleration 2 Constant deceleration	B1 B1	Not: answers using rate of acceleration - for either mark Not: Constant acceleration Allow: constant negative acceleration Allow: uniform /steady deceleration
(c)(ii)	The area under the graph from $t=0$ to $t=2 \mathrm{~s}$ is smaller (AW)	B1	
(d)	$\begin{aligned} & s=\frac{1}{2}(v+u) t \\ & 0.020=\frac{1}{2}(0.26) \times \mathrm{t} \\ & \text { time }=0.15(\mathrm{~s}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Arriving at an acceleration of $1.69 \mathrm{~m} \mathrm{~s}^{-2}$ and no further works scores zero. Allow: Alternative approaches Note: Answer to 3 sf is 0.154 (s) Note: ‘0.020/0.26 = 0.77 (s)’ scores zero
	Total	7	

Q 2	Answer	Marks	Guidance
(a)	Aristotle: Heavier/massive objects fall faster (AW) Galileo: All objects (irrespective of their mass) fall at the same rate / have same acceleration (of free fall)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Allow: 'the same rate of acceleration' for this B1 mark
(b)(i)	Any two from: - speed - area - density of air / viscosity of air - streamlining / texture of clothing	B1	Not: 'wind' for 'speed' Allow: surface / frontal area
(b)(ii)	Acceleration is equal to $9.8(1) \mathrm{m} \mathrm{s}^{-2} / \mathrm{g}$ There is no drag / net force $=$ weight / 'only force acting is $m g^{\prime}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
(b)(iii)	Correct shape curve with finite value at $t=0$ Value of $F=0$ after 10 s	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Allow a tolerance of $+/-0.5$ of a square
(b)(iv)	$\begin{aligned} & \text { weight }=80 \times 9.81 \text { or } 784.8(\mathrm{~N}) \\ & \text { or }(\text { net force })=80 \times 3 \text { or } 240(\mathrm{~N}) \\ & (80 \times 9.81)-\text { drag }=240 \\ & \text { drag }=540(\mathrm{~N}) \end{aligned}$	C1 C1 A1	Note: The first C1 mark is either for the weight or the net force Note: Answer to 3 sf is $545(\mathrm{~N})$ and $544.8(\mathrm{~N})$ to 4 sf
	Total	10	

Q 3	Answer	Marks	Guidance
(a)	$\begin{aligned} & E_{\mathrm{p}}=190 \times 9.81 \times 25 \\ & E_{\mathrm{p}}=4.7 \times 10^{4}(\mathrm{~J}) \end{aligned}$	B1	Note: Answer is 4.66×10^{4} to 3 sf
(b)	$\begin{aligned} & E_{\mathrm{k}}=1 / 2 \times 190 \times 30^{2} \\ & E_{\mathrm{k}}=8.6 \times 10^{4}(\mathrm{~J}) \end{aligned}$	B1	Note: Answer is 8.55×10^{4} to 3 sf
(c)	Work done by the motorbike / energy from the engine (AW)	B1	Note: There must be reference to work or energy Allow: chemical energy to kinetic energy / E_{K}
(d)	$\begin{aligned} & \text { work done }=\text { change in energy } \\ & \text { force } \times 120=(8.55-4.66) \times 10^{4} \\ & \text { force }=320(N) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Possible ecf from (a) and (b)
(e)(i)	$\begin{aligned} & \left(s=1 / 2 a t^{2}-\text { for the vertical fall }\right) \\ & 9.5=1 / 2 \times 9.81 \times t^{2} \quad \text { (Any subject) } \\ & t=\sqrt{(2 \times 9.5) / 9.81} \text { or } \underline{1.39} \\ & \text { time }=1.4(\mathrm{~s}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A0 } \end{aligned}$	
(e)(ii)	$\begin{aligned} & \text { Horizontal velocity }=30 \mathrm{~m} \mathrm{~s}^{-1} \\ & \text { distance }=1.4 \times 30 \text { or } 42(\mathrm{~m}) \\ & \text { (number of cars =) } 42 / 1.8 \\ & \text { (number of cars =) } 23 \end{aligned}$	C1 A1	Allow: 23.3 cars Allow: 22 if height of last car is mentioned
	Total	9	

Q 4	Answer	Marks	Guidance
(a)	The resultant force is zero There is no acceleration	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Not 'in equilibrium' Not: constant velocity; since this is in the question
(b)	(moment of a force $=$) force \times perpendicular distance from point / pivot	B1	Must use ticks on Scoris to show where the marks are awarded \checkmark 'perpendicular' must be spelled correctly to gain the mark.
(c)	Forces are in the same direction / The forces are not opposite / The forces are not equal (in magnitude)	B1	
(d)	(clockwise moments $=)(720 \times 0.40)+(180 \times 0.60)$ or 396 (N m) sum of clockwise moments = sum of anticlockwise moments $396=1.3 F$ $F=300(\mathrm{~N})$	C1 C1 A1	Allow: 2 marks for ' $720 \times 0.40=1.3 \times F, F=221(\mathrm{~N})$ ' or $180 \times 0.60=1.3 \times F, F=83(N)^{\prime}$ Note: Answer is $305(\mathrm{~N})$ to 3 sf and $304.6(\mathrm{~N})$ to 4 sf
(e)	The force at \mathbf{X} decreases The force at \mathbf{Y} increases / greater clockwise moment $/ F_{X}+F_{Y}=900(\mathrm{~N})$	$\begin{aligned} & \hline \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Allow: the rider's centre of gravity / mass moves further from \mathbf{X}
	Total	9	

Q 5	Answer	Marks	Guidance
(a)(i)	The driver's head will bounce back / 'whiplash'	B1	Allow: suffocation Allow: the airbag will be (too) rigid / not collapse so the force on the head will still be large (AW)
(a)(ii)	Time to stop is longer Magnitude of deceleration is smaller $F=$ ma used correctly to explain why the force is smaller Alternative Time to stop is longer $F=\frac{m v-m u}{\Delta t}$ or $F=\frac{\Delta m v}{\Delta t}$ used to explain why the force is smaller Change in momentum is constant	B1 B1 B1 B1 B1 B1	Allow: ‘smaller acceleration’ Allow: use of $F \propto a$ Allow: p for mv Allow: omissions of delta
(b)(i)	$x \propto u^{2}$ or doubling the speed increases the distance by a factor of 4	B1	
(b)(ii)	```thinking distance = 30 < 0.6 or 18(m) braking distance = 0.08 \times U' or 0.08 \times 30 or 72 (m) stopping distance = 18+72 stopping distance =90(m)```	C1 C1 A1	
(c)(i)	Circle shows the possible position(s) of the car from a satellite	B1	Allow: 'where' a car can be. Allow: The car is at the intersection of the spheres. Not: the area / region / space where a car can be
(c)(ii)	The time taken for (coded) signal to travel from satellite to the receiver is determined The distance is calculated by multiplying the time by $c / 3$ $\times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} /$ speed of light / radio waves / microwaves	B1 B1	Not: if any signal travels from the GPS in the car to the satellite
	Total	11	

Q 6	Answer	Marks	Guidance
(a)(i)	force/extension or force/change in length	B1	Allow: force per unit extension or force per unit compression
(a)(ii)	Tension/force in each spring is halved so the extension (of each spring) is also halved. (Therefore the force constant is twice that of one spring.)	B1	Allow: the extension of each spring is halved, the force is the same (for the system, hence the force constant doubles)
(b)	Measure the thickness of the strip (using the micrometer) and calculate its (cross-sectional) area Load the hanger until the strip breaks. Calculate the (maximum) weight of the masses using $W=m g$. breaking stress = (maximum) weight/(crosssectional) area	B1 B1 B1	Not: surface area Allow: 'force' for 'weight' Allow: breaking stress = (maximum) force/(cross-sectional) area Allow: F/A if the words force and area have been used in the answer
(c)(i)	Any one from: Elastic (behaviour) / obeys Hooke's law / stress is proportional to strain	B1	
(c)(ii)	It will be longer / permanent strain / suffer plastic deformation (AW)	B1	
(c)(iii)	The statement is incorrect because the Young modulus can only be determined from the linear region of the graph.	B1	Allow: Young modulus only applies to elastic behaviour Allow: stress is not proportional to strain as the line is curved Not: stress is not proportional to strain
	Total	8	

Q 7	Answer	Marks	Guidance
(a)	$\begin{aligned} & \text { weight }=2.8 \times 10^{4} \times 9.81 \text { or } 2.75 \times 10^{5}(\mathrm{~N}) \\ & \text { stress in each cable }=\frac{1}{4} \times \frac{2.75 \times 10^{5}}{4.5 \times 10^{-4}} \\ & \text { or } 1.53 \times 10^{8}(\mathrm{~Pa}) \\ & \text { strain }=\frac{1.53 \times 10^{8}}{2.1 \times 10^{11}} \text { or } 7.28 \times 10^{-4} \\ & \text { extension }=7.52 \times 10^{-4} \times 32 \text { or } 0.023(\mathrm{~m}) \\ & \text { extension }=23(\mathrm{~mm}) \end{aligned}$	C1 C1 C1 A1	If g is omitted do not award the first mark but allow ECF for a possible maximum of $3 / 4$ marks. Use FT on the calculation. Allow: 3 marks for 93 (mm) - factor of 4 omitted Alternative approach: $\begin{array}{ll} \text { weight }==2.8 \times 10^{4} \times 9.81 \text { or } 2.75 \times 10^{5}(\mathrm{~N}) & \mathrm{C} 1 \\ \text { extension }=\frac{\mathrm{FL}}{\mathrm{AE}} \quad \text { any subject } & \mathrm{C} 1 \\ \text { extension }=\frac{0.25 \times 2.75 \times 10^{5} \times 32}{4.5 \times 10^{-4} \times 2.1 \times 10^{11}} & \mathrm{C} 1 \\ \text { extension }=23(\mathrm{~mm}) & \mathrm{A} 1 \end{array}$
(b)	Extension will increase The tension > weight (for acceleration)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Allow: the tension increases to cause the acceleration Allow: Net force is upwards so tension / force in the cables increases
	Total	6	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
GROUP
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

