edexcel

Mark Scheme (Results)
Summer 2016

Pearson Edexcel IAL in Core Mathematics 12 (WMA01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code WMA01_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL I AL MATHEMATI CS

General I nstructions for Marking

1. The total number of marks for the paper is 125
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $p q|=|c|$, leading to $\mathrm{x}=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $p q|=|c|$ and $| m n|=|a|$, leading to $\mathrm{x}=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0$, leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by $1 .\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme	Marks
$\mathbf{1}$	$(1+p x)^{8}=1+8(p x)+\frac{8 \times 7}{2!}(p x)^{2}$	M1
	Compares coefficients in $x \Rightarrow 8 p=12 \Rightarrow p=1.5$	
Compares coefficients in $x^{2} \Rightarrow q=28 p^{2} \Rightarrow q=63$	M1A1	
		M1A1

(a)

M1 Uses the power series expansion/ binomial expansion with the correct form for terms 2 and 3. You may ignore the first term in this question.
Accept the correct coefficient with the correct power of x for terms 2 and 3 .
$(1+p x)^{8}=1+8(\ldots x)+\frac{8 \times 7}{2!}(. . x)^{2}$
Allow missing bracket on x^{2} term.
Allow for $(1+p x)^{8}=1+\binom{8}{1}(. . x)+\binom{8}{2}(. . x)^{2}$ or equivalent.
Allow sight of $\binom{8}{1}(. . x)$ and $\binom{8}{2}(. . x)^{2}$ separated by commas
M1 Sets their coefficient in x equal to $12 \Rightarrow 8 p=12 \Rightarrow p=\ldots$
It is not dependent on the previous M but it must be of the form $k p=12 \Rightarrow p=\ldots$
A1 $\quad p=1.5$ or equivalent such as $\frac{12}{8}$
M1 Sets q equal to their coefficient of x^{2} (which must include a p or a p^{2}) then substitutes in their value of p leading to $q=$
A1 $q=63$

Question Number	Scheme	Marks
2(a)	$\begin{aligned} 4(x-2),, 2 x+1 & \Rightarrow 4 x-8,, 2 x+1 \\ & \Rightarrow x,, 4.5 \end{aligned}$	M1A1
(b)	$(2 x-3)(x+5)>0$	
	Roots are 1.5, -5	B1
	Chooses outsides $x<-5, x>1.5$	M1A1
(c)	$x<-5,1.5<x, 4.5$	B1 (3)
		$\begin{array}{r} (1) \\ \text { (6 marks) } \end{array}$

(a)

M1 Proceeds as far as x,, ... after firstly multiplying out brackets oe. Condone $x<\ldots$ for this mark Minimum expectation is that you see $4 x-8 \ldots 2 x+1 \Rightarrow x \ldots . c$ where \ldots is ,, or $<$
A1 $x, 4.5$ or equivalent in set notation such as $\{x: x, 4.54 x \in(-\infty, 4.5]$. Accept just $(-\infty, 4.5]$
(b)

B1 Critical values are 1.5, -5
M1 Chooses the outside values of their critical values. You may well see candidates multiply out the brackets and factorise incorrectly. They can score this mark for choosing the 'outsides'
Do not allow this mark from just a diagram. You must see the inequalities.
Accept for the method mark $x,-5, x$...1.5
A1 Accept any of ' $x<-5, x>1.5$ ' ' $x<-5$ or $x>1.5$ ' ' $\{x: x<-5 \cup x>1.5\}$ ' ' $\{x:-\infty<x<-5 \cup 1.5<x<\infty\}$ ' or their exact equivalents

Do not accept on its own (without seeing any of the above)

$$
' x<-5 \text { and } x>1.5 \prime \quad '-5>x>1.5^{\prime} \quad '\{x: x<-5 \cap x>1.5\} '
$$

(c)

B1 cao Accept any of
$' x<-5,1.5<x, 4.5^{\prime} \quad$ ' $x<-5$ or $1.5<x, 4.5^{\prime} \quad$ ' $\{x: x<-5 \cup 1.5<x, 4.5\}^{\prime}$
' $x \in-\infty<x<-5 \cup 1.5<x$, 4.5 ' or their exact equivalents.
There must be just two distinct regions represented by just two inequalities.
If a candidate writes x, $4.5 x<-5, x>1.5$ it is B0

Question Number	Scheme	Marks
3 (i)	Either $4^{2 x+1}=2^{2(2 x+1)}$ and $8^{4 x}=2^{3 \times 4 x}$ or $8^{4 x}=4^{\frac{3}{2} \times 4 x}$	M1
	$2(2 x+1)=12 x \Rightarrow x=\frac{1}{4}$	dM1A1
(ii)(a)		(3)
	$3 \sqrt{18}-\sqrt{32}=9 \sqrt{2}-4 \sqrt{2}=5 \sqrt{2}$	M1A1
(b)		(2)
	$\sqrt{n}=5 \sqrt{2} \Rightarrow n=(5 \sqrt{2})^{2}=25 \times 2=50$	M1A1
		(7 marks)
Alt 3 (i)	Taking logs of both sides and proceeding to ($2 x+1) \log 4=4 x \log 8$	M1
	$\Rightarrow x=\frac{\log 4}{4 \log 8-2 \log 4}$	
	$\Rightarrow x=\frac{\log 4}{\log 256}=\frac{1}{4}$	dM1A1
		(3)

(i)

M1 Writes both sides as powers of 2 or equivalent $\operatorname{Eg} 2^{2(2 x+1)}=2^{3 \times 4 x}$
Alternatively writes both sides as powers of 4 or 8 or 64 . $\operatorname{Eg} 8^{4 x}=4^{\frac{3}{2} \times 4 x}$
Note that expressions such as $2^{2+(2 x+1)}=2^{3+4 x}$ would be M0
Condone poor (or missing) brackets $2^{2 \times 2 x+1}=2^{3}$ but not incorrect index work eg $4^{2 x+1}=8^{\frac{1}{2}(2 x+1)}$ It is possible to use logs. most commonly with base 2 or 4 . Using logs it is for reaching a linear form of the equation, again condoning poor bracketing .

$$
4^{2 x+1}=8^{4 x} \Rightarrow \log 4^{2 x+1}=\log 8^{4 x} \Rightarrow(2 x+1) \log 4=4 x \log 8
$$

dM1 Dependent upon the previous M. It is for equating the indices and proceeding to $x=$..
Condone sign/bracketing errors when manipulating the equation but not processing errors
If logs are used they must be evaluated without a calculator. Lengthy decimals would be evidence of this and would be dM0
$(2 x+1) \log _{2} 4=4 x \log _{2} 8 \Rightarrow(2 x+1) \times 2=4 x \times 3 \Rightarrow x=.$.
$4^{2 x+1}=8^{4 x} \Rightarrow 2 x+1=4 x \log _{4} 8 \Rightarrow 2 x+1=\frac{3}{2} \times 4 x \Rightarrow x=.$. is fine
A1 $x=\frac{1}{4}$ or equivalent
(ii)(a) Mark part (ii) as one complete question. Marks in (a) can be gained from (b)

M1 Writes either $\sqrt{18}=3 \sqrt{2}$ or $3 \sqrt{18}=9 \sqrt{2}$ or $\sqrt{32}=4 \sqrt{2}$
If the candidate writes $3 \sqrt{18}-\sqrt{32}=k \sqrt{2}$ it can be scored for $\frac{3 \sqrt{18}}{\sqrt{2}}=9$ or $\frac{\sqrt{32}}{\sqrt{2}}=4$
A1 $5 \sqrt{2}$ or states $k=5$
The answer without working (the M1) would be 0 marks
(ii)(b)

M1 Moves from $\sqrt{n}=k \sqrt{2}$ to $n=2 k^{2}$
Also accept for this mark $\sqrt{n}=\sqrt{50}$ or indeed $\sqrt{50}$ on its own
A1 $\quad(n=) 50$

Question Number	Scheme	Marks
4(a)	Awrt 2.4495	B1
(b)	Strip width $=2$	B1
	$\text { Area } \approx \frac{\text { 'Strip width' }}{2}\{0+2.8284+2 \times(1.4142+2+2.4495 \text { ' })\}=\text { awrt } 14.556$	M1A1
		(3)
(c)(i)	$\frac{1}{2}(b)=7.278 \quad \text { Allow awrt } 7.28$	B1ft
		(1)
(ii)	$\int_{-2}^{6} 2 \mathrm{~d} x=[2 x]_{-2}^{6}=12-(-4)=16$	M1
	$\int_{-2}^{6}(2+\sqrt{x+2}) \mathrm{d} x=\int_{-2}^{6} 2 \mathrm{~d} x+(\mathrm{b})=16+(\mathrm{b})=30.556 \quad \text { Allow awrt } 30.56$	dM1 A1ft
		$\text { (8 marks) }^{(3)}$

(a)

B1 Awrt 2.4495
(b)

B1 Uses a strip width of 2 units. This may be embedded in the trapezium formula.
It may be implied by sight of $\frac{2}{2}\{\ldots$.$\} or 1 \times\{\ldots$.
M1 Uses the correct form of the bracket within the trapezium rule.
Look for (0) $+2.8284+2 \times\left(1.4142+2+2.4495{ }^{\prime}\right)$
A1 awrt 14.556
If separate trapezia are used then you should see the sum of 4 trapezia. B1 Width or $\mathrm{h}=2$ and M1 for the correct values of 'a' and 'b' for each one.
(c)(i)

B1 ft Look for $\frac{1}{2}$ (b). Follow through on their answer to (b) but you may allow accuracy to 2dp
Also allow from adapting their trapezium rule in part (b) with all terms halved
(c)(ii)

M1 Look for an attempt to either integrate ' 2 ' by writing [$2 x]_{-2}^{6}$ oe. It may be embedded within a longer integral. Alternatively finds the area of a rectangle with height 2 and length of $(6-(-2))$ which is implied by the sight of 16
Do not allow $\int 2 \mathrm{~d} x=2$
Allow an attempt to use the trapezium rule in part (b) with 2 being added to each value inside the bracket.
dM1 Adds together their answer for the integral of 2 to their answer for (b).
It is dependent upon the previous M
If their trapezium rule is adapted then this mark is scored at the point when the value is calculated
A1ft $16+(b)$. Accept this for all 3 marks as long as no incorrect working seen. Allow accuracy to 2 dp .

(i)(a)

B1 States that U_{2} is 4 . Accept $\frac{4}{1}$ but not $\frac{4}{4-3}$ and remember to isw.
Note that $U_{1}=4$ so be sure that you don't award this B1
(i)(b)

M1 Uses the method that $\sum_{n=1}^{100} U_{n}=k \times 4$ where $k=100$ or 99
You may see the AP formula being used which is fine as long as $a=4, d=0$ and $n=99 / 100$ Look for expression of the form $\frac{100}{2}\{2 \times 4+99 \times 0\}$ OR $\frac{100}{2}\{4+4\}$
A1 400
(ii)

M1 Uses $S \ldots \frac{n}{2}(2 a+(n-1) d)$ with \ldots as $=$ or $>$ or $<$ and $S=0 a=97$ or $100, d=-3$
Alternatively uses $S \ldots \frac{n}{2}(a+l)$ with \ldots as $=$ or $>$ or $<$ and $S=0 a=97$ or $100, l=100-3 n$
A solution should not appear to come from the value of the nth term or in fact any linear equation. This is M0
dM1 Dependent upon previous M. Scored for a solution of their quadratic equation in n. Accept $\mathrm{n}=, \mathrm{n}>, \mathrm{n}<$
A1 $n=66$ cso

Part (ii) Alt 1 Using the formula $\sum_{1}^{n} r=\frac{n(n+1)}{2}$
M1 For attempting to solve $\sum_{r=1}^{n} 3 r . . . \sum_{r=1}^{n} 100$ where .. is $=$ or $>$ or $<$ by writing $\sum_{1}^{n} r=\frac{n(n+1)}{2}$ and $\sum_{r=1}^{n} 100=100 n$. Condone the 3 in the $\sum_{r=1}^{n} 3 r$ "disappearing"
dM1 Dependent upon previous M. Scored for a solution to their quadratic equation in n.
Accept $\mathrm{n}=, \mathrm{n}>, \mathrm{n}<$
A1 $n=66$ cso

Part (ii) Alt 2 Using the fact that the sum is (less than) zero when the negative terms add up to more than the positive terms in the sequence

M1 Sum of positive terms $=97+94+\ldots \ldots \ldots+1=\frac{33}{2}(97+1)=[1617]$
Sum of negative terms $=-2+-5 . \ldots . . .$.
$\frac{n}{2}\{2 \times 2+3(n-1)\}>{ }^{\prime} 1617^{\prime}$
dM1 Dependent upon last mark. It is for solving the quadratic equation with usual methods and adding on 33 terms (the number of positive terms)
$\frac{n}{2}\{2 \times 2+3(n-1)\}>^{\prime} 1617^{\prime} \Rightarrow n>32$. So total number of terms is $33+33=66$
A1 cso 66

Question Number	Scheme	Marks
6(a)	$\frac{x^{2}-4}{2 \sqrt{x}}=\frac{x^{2}}{2 \sqrt{x}}-\frac{4}{2 \sqrt{x}}=\frac{1}{2} x^{\frac{3}{2}}-2 x^{-\frac{1}{2}}$	M1A1A1
(b)	$\int \frac{x^{\frac{3}{2}}}{2}-2 x^{-\frac{1}{2}} \mathrm{~d} x=\frac{x^{\frac{5}{2}}}{2 \times 2.5}-2 \frac{x^{\frac{1}{2}}}{0.5}(+c)$	M1 A1ft A1
$=\frac{x^{\frac{5}{2}}}{5}-4 x^{\frac{1}{2}}+c$	B1	

(a)

M1 Attempt to divide by $2 \sqrt{x}$ to get exactly two terms (not three)
This can be implied by any of A, B, p or q being correct.
A1 Two of A, B, p or q correct. Look for two of the four numbers $\frac{x^{\frac{3}{2}}}{2}-2 x^{-\frac{1}{2}}$ oe Allow the power as $\frac{3}{2}$ appearing as $2-\frac{1}{2}$
A1 Completely correct expression $\frac{x^{\frac{3}{2}}}{2}-2 x^{-\frac{1}{2}}$ or equivalent. Eg accept $0.5 x^{1.5}-2 x^{-0.5}$ The powers must now be simplified.
(b)

M1 Increases a fractional index by one. Do not allow if the candidate integrates the numerator and denominator of the original function
A1ft One of the fractional terms correct unsimplified.
You may follow through on any term with a fractional index.
A1 Both terms correct unsimplified
Allow the powers and coefficients such as $\frac{5}{2}$ appearing as $\left(\frac{3}{2}+1\right)$ for this mark
B1 $=\frac{x^{\frac{5}{2}}}{5}-4 x^{\frac{1}{2}}+c$ or exact equivalent such as $0.2 x^{2.5}-4 x^{0.5}+c$

Question Number	Scheme	Marks
7(a)	Sets $\mathrm{f}(\pm 2)=0$ $\mathrm{f}(2)=0 \Rightarrow 24+4 a+2 b-10=0 \Rightarrow 4 a+2 b=-14 \Rightarrow 2 a+b=-7$	$\begin{array}{l\|} \hline \text { M1 } \\ \text { A1* } \end{array}$
(b)	Sets $f(\pm 1)=-36$ $\mathrm{f}(-1)=-36 \Rightarrow-3+a-b-10=-36 \Rightarrow a-b=-23 \quad \text { oe }$ Solves simultaneously to get both a and b $a=-10, \quad b=13$	(2) M1 A1 dM1 A1
(c)(i)	Divides their $\mathrm{f}(x)$ by $(x-2)$ to get a quadratic $\mathrm{f}(x)=(x-2)\left(3 x^{2}-4 x+5\right) \text { or } \mathrm{Q}(x)=3 x^{2}-4 x+5$	(4) $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
(ii)	Calculates $b^{2}-4 a c$ on their $\mathrm{Q}(x)$ or solves their $\mathrm{Q}(x)=0$ $\left(3 x^{2}-4 x+5\right)$ has no roots as $b^{2}-4 a c=16-60<0$. Hence $\mathrm{f}(x)$ has 1 root	M1 A1* (4) (10 marks)

(a)

M1 Sets $f(\pm 2)=0$
The $=0$ may be implied by later working.
A1* $\mathrm{f}(2)=0 \Rightarrow 2 a+b=-7$. There must be at least one intermediate line between these two
statements. Accept $\mathrm{f}(2)=0 \Rightarrow 3 \times 2^{3}+a \times 2^{2}+b \times 2-10=0 \Rightarrow 2 a+b=-7$
Note that this is a given result.
(b)

M1 Sets $f(\pm 1)=-36$
If a candidate attempts division look for a minimum of

$$
\mathrm{f}(a, b)
$$

before the candidate sets their remainder, which must be a function of a and b equal to -36
A1 $\mathrm{f}(-1)=-36 \Rightarrow a-b=-23$ or equivalent. The equation does not need to be simplified but the indices must have been dealt with correctly
In division the remainder may appear in the form $-10-(b-a+3)=-36$
dM1 Solves simultaneously to get values for both a and b. Don't be too concerned with the process as long as you see values for a and b coming from two equations in both a and b. It is dependent upon the previous M
A1 $a=-10, \quad b=13$
(c)(i)

M1 For dividing their $\mathrm{f}(x)$ by $(x-2)$ to get a $\mathrm{f}(x)=(x-2) \times$ quadratic
If it is attempted by division look for the first two terms following through on their a
$x - 2 \longdiv { 3 x ^ { 3 } + x ^ { \prime } a ^ { \prime } x ^ { 2 } + b ^ { \prime } x - 1 0 }$
If it attempted by inspection only check first and last terms. Look for $\mathrm{f}(x)=(x-2)\left(3 x^{2} \ldots x+5\right)$
A1 $\mathrm{f}(x)=(x-2)\left(3 x^{2}-4 x+5\right)$ or $\mathrm{Q}(x)=3 x^{2}-4 x+5$
(c)(ii)

M1 Scored for an attempt at finding the number of roots of their 3TQ Q (x).
This can be attempted by calculating the value of their $b^{2}-4 a c, \operatorname{Eg} b^{2}-4 a c=16-60=-44$ or using the formula/ completing the square to find the roots. Eg. $a x^{2}+b x+c=0 \Rightarrow x=. ., .$.
A1* cso. All aspects must be correct including $\mathbf{f}(x)=(x-2)\left(3 x^{2}-4 x+5\right)$ with proof that $\left(3 x^{2}-4 x+5\right)$ has no roots and hence $\mathrm{f}(x)$ has only $1 \operatorname{root}($ at $x=2)$

Question Number	Scheme	Marks
8(a)	$\left(\frac{5+\sin \theta}{3 \cos \theta}=2 \cos \theta\right) \Rightarrow 5+\sin \theta=6 \cos ^{2} \theta$	M1
	$\Rightarrow 5+\sin \theta=6\left(1-\sin ^{2} \theta\right) \Rightarrow 6 \sin ^{2} \theta+\sin \theta-1=0$	dM1A1* (3)
(b)	$6 \sin ^{2} \theta+\sin \theta-1=0 \Rightarrow(3 \sin \theta-1)(2 \sin \theta+1)=0$	M1
	$\begin{gathered} (\sin \theta)=+\frac{1}{3},-\frac{1}{2} \\ \theta=19.5^{\circ},-30^{\circ} \end{gathered}$	A1 dM1,A1
		(4) (7 marks)

(a)

M1 Attempts to cross multiply to form an equation in the form $5+\sin \theta=A \cos ^{2} \theta$
dM1 Dependent upon previous M. For using $\cos ^{2} \theta= \pm 1 \pm \sin ^{2} \theta$ to get an equation in just $\sin \theta$
A1* This is a given answer. All aspects must be correct.
Mixed variables, say x^{\prime} s and θ^{\prime} s would lose this mark.
An otherwise correct solution with $\cos ^{2} \theta$ or $(\cos \theta)^{2}$ written as $\cos \theta^{2}$ would also be M1 dM1 A0
(b)

M1 Attempts to factorise, usual rules. Accept answers by formula or just written down from a calculator. Accept answers/factors given in terms of x for this mark
A1 For the values $+\frac{1}{3},-\frac{1}{2}$
These do not have to be simplified and can be implied by correct answers for θ
dM1 Calculates at least one value of θ from their $\sin \theta^{\prime}$.
It is dependent upon the previous M . You may have to check with a calculator.
This may be implied by either $\theta=19.5^{\circ},-30^{\circ}$ from a correct quadratic
A1 Both $\theta=19.5^{\circ}$ and -30° with this accuracy and no additional solutions inside the range.
Condone the answer $\theta=19.5^{\circ}$ and -30.0°
Ignore any solutions outside the range.

(a) (i)

M1 Attempts 6×0.92^{24} or $6 \times 0.92^{25-1}$
A1 awrt 0.81
(a)(ii)

M1 Attempts to use $S_{\infty}=\frac{a}{1-r}$ with $a=6$ and $r=0.92 S_{\infty}=\frac{6}{1-0.92}$
A1 75
(b)

M1 Sets $S_{n}>72 \Rightarrow \frac{6\left(1-0.92^{n}\right)}{1-0.92}>72 \quad$ Accept $\frac{6\left(1-0.92^{n}\right)}{1-0.92}=72$ or $\frac{6\left(1-0.92^{n}\right)}{1-0.92}<72$
A1 Proceeds to $0.92^{n} \ldots .0 .04$ where \ldots. is either $=$ or $>$ or $<$
dM1 Proceeds from $a^{n} \ldots . b$ to $n \ldots . \log _{a} b$ or $n \ldots . \frac{\log b}{\log a}$ where \ldots. is $=,>$ or $<$
The values of a and b must be positive
Allow this mark in cases where the candidate has incorrectly multiplied 6 by 0.92^{n} to form an equation in the form $5.52^{n} \ldots . k(k>0)$ and solves by correctly taking logs
A1 cso $n=39$. All aspects must be correct including the inequalities on each line if they have been used. It is acceptable to use ' $=$ ' however
Do not accept $n=38.6$ for this mark
Note: Trial and Improvement can gain all 4 marks as long as $n=39$ is stated
M1A1 For sight of a trial at 38 or 39 using the sum formula

$$
\frac{6\left(1-0.92^{38}\right)}{1-0.92}=\operatorname{awrt} 71.8 \text { or } \frac{6\left(1-0.92^{39}\right)}{1-0.92}=\operatorname{awrt} 72.1
$$

M1A1 For trial at 38 and 39 using the sum formula, and conclusion that $n=39$

(a) Look only at the part of the graph between 0 and 2π.

If there is no x scale shown, then assume that 2π is at the point where their graph stops.
If the sketch continues past the x label on the x axis, assume 2π is at the point of the x of the x label.
M1 Graph is harmonic. Could be part of a cycle, or several cycles but needs at least one max and one min in the range $0,, \theta, 2 \pi$. Do not penalise graphs which are not in the correct position in relation to either axis
A1 Requires only one cycle between 0 and 2π.
The sketch needs: a positive y intercept and a positive y value at 2π, with a positive gradient at both 0 and 2π.The maximum must be positive and the minimum must be negative.
(b) B1B1B1 Score 1,1,0 for ANY 2 out of 3 and 1,0,0 for any 1 out of 3

Each answer is cao. No decimals are accepted unless the exact value is also given.
Accept points marked on the graph.
Accept coordinates with zeroes (as given) or for example $\frac{\sqrt{2}}{2}$ marked on the y axis or an obvious statement such as y intercept is ... or $y=$
For both correct answers in degrees withhold one mark.
If there are extra answers in the range, in addition to the correct answers, withhold one mark.
If answers are given in text and on diagram, the text takes precedence.
(c)

M1 Takes invsin and subtracts $\frac{\pi}{4}$ in an attempt to find one value of x. Look for $x=\frac{\pi}{3}-\frac{\pi}{4} \Rightarrow x=$.
Accept answers in degrees ($x=60-45 \Rightarrow x=.$.) and decimals for the method mark.
Do not accept mixed degrees/radians.
A1 One of $\frac{\pi}{12}$ or $\frac{5 \pi}{12}$
M1 Correct attempt to get a second value of x from their first value. Accept $x+\frac{\pi}{4}=\pi-$ their $\frac{\pi}{3} \Rightarrow x=$.. Accept degrees or decimals for this method mark
A1 Both $\frac{\pi}{12}$ and $\frac{5 \pi}{12}$ and no other values within the range. Ignore additional answers outside the range.

(a)

M1 Attempts Pythagoras with lengths $r,(r-0.4)$ and 1.2 in the correct positions within the formula Alternatively uses the given answer and attempts Pythagoras' theorem with $1.6,1.2$ and 2
A1* Proceeds to $r=2$ with no errors
If the alternative method is used, then there must be a statement such as hence true, $r=2$
(b)

M1 Attempts to find either the angle or half angle in the sector in either degrees or radians
For the half angle accept $\arctan \left(\frac{1.2}{1.6}\right), \arcsin \left(\frac{1.2}{2}\right), \arccos \left(\frac{1.6}{2}\right)$
For the whole angle accept $2.4^{2}=2^{2}+2^{2}-2 \times 2 \times 2 \times \cos \theta \Rightarrow \theta=$..or similar.
A1* cso. This is a given answer $A O B=1.2870$
Allow from a value where $1 / 2$ the angle lacks 4 dp of accuracy
(c)

M1 Correct method to find the area of the sector with radius 2 and angle 1.2870 radians
If angle was found in degrees use $=\frac{{ }^{\prime} 73.74^{\prime}}{360} \times \pi \times 2^{2}=(2.574)$
If angle was found in radians use $=\frac{1}{2} \times 2^{2} \times 1.2870^{\prime}$
M1 Correct method to find the area of the isosceles triangle with lengths 2 and angle 1.2870
For the triangle $A O B$ accept $\frac{1}{2} \times 2 \times 2 \times \sin ' 73.74^{\prime}$ or $\frac{1}{2} \times 2 \times 2 \times \sin ^{\prime} 1.2870^{\prime}=(1.92)$
Also for triangle $A O B$ accept use of $\frac{1}{2} b h=\frac{1}{2} \times 2.4 \times 1.6$. Note $\frac{1}{2} b h=\frac{1}{2} \times 2.4 \times 2$ is M0
dM1 Attempts the area of the sail using the correct combinations of sector - triangle.
It is dependent upon both previous M's
If the candidate uses the segment formula $\frac{1}{2} \times 2^{2} \times{ }^{\prime} 1.29^{\prime}-\frac{1}{2} \times 2^{2} \times \sin 1.29^{\prime}$ all three M's can be awarded
A1 awrt $0.654\left(m^{2}\right)$

Question Number	Scheme	Marks		
12(a)	Writes C as $(x-a)^{2}+(y-0)^{2}=a^{2}$	M1A1		
(b)	Subs $(4,-3)$	$\Rightarrow(4-a)^{2}+(-3-0)^{2}=a^{2}$		
	$\Rightarrow 16-8 a+a^{2}+9=a^{2}$			
$\Rightarrow 25=8 a$				
$\Rightarrow a=\frac{25}{8}$			\quad M1	(2)
:---				

Mark parts (a) and (b) together. Award marks in (a) from (b) and vice versa, but see note
(a)

M1 Attempts to find the equation of C centre ($a, 0$) radius a. Accept $(x \pm a)^{2}+y^{2}=a^{2}$ oe If the alternative form of the circle is used accept $x^{2}+y^{2} \pm 2 a x=a^{2}-a^{2}$
Allow for the M1 $(x \pm a)^{2}+(y \pm 0)^{2}=r^{2}$
A1 Writes C as $(x-a)^{2}+(y-0)^{2}=a^{2}$ or equivalent $x^{2}+y^{2}-2 a x=0$.
(b)

M1 Subs $x=4$ and $y=-3$ into their circle equation for C which must be of the form $(x \pm a)^{2}+(y \pm 0)^{2}=a^{2}$
dM1 Proceeds to a linear equation in ' a ' and reaches $a=\ldots$. Condone numerical slips
A1 $\quad a=\frac{25}{8} \quad$ Accept exact alternatives

Note: There are some candidates who write the equation of the circle as $(x-a)^{2}+(y-0)^{2}=r^{2}$ in part (a) This is M1 A0
However in part (b) they substitute $(4,-3)$ and write down $(4-a)^{2}+(-3)^{2}=a^{2}$
We will allow them to score all 3 marks in part (b).
Had they written $(x-a)^{2}+y^{2}=a^{2}$ in (b) we would allow them to score all 5 marks

(a)

M1 Uses one correct log law.
Eg Uses the index law and writes $2 \log _{2} y=\log _{2} y^{2}$.
Alternatively writes 5 as $\log _{2} 32$. This may well come from $\log _{2} \ldots=5 \Rightarrow \ldots=32$
Note that $2 \log _{2} y+\log _{2} x=2 \log _{2} x y$ is M0
M1 Uses two correct log laws
Award for $\log _{2} y^{2}=\log _{2}(32)-\log _{2} x$
or $\log _{2} x+\log _{2} y^{2}=5 \Rightarrow \log _{2} x y^{2}=5$
A1 Proceeds correctly to $y^{2}=\frac{32}{x}$
(b)

M1 Undoes the \log in the second equation $\log _{x} y=-3 \Rightarrow y=x^{-3}$
This may well appear later in the solution
M1 Combines both equations to form a single equation in one variable.
A1 $x=\frac{1}{2}$ or $y=8$. Condone a solution $y= \pm 8$ for this mark
M1 Substitutes their $x=\frac{1}{2}$ into an equation to find y.
Alternatively substitutes their $y=8$ into an equation to find x
A1 $x=\frac{1}{2}$ and $y=8$ only. Note $x=\frac{1}{2}$ and $y= \pm 8$ is A0
SC. If a candidate uses $y=\frac{k}{x}$ with $\log _{x} y=-3$ this can potentially score M1: Undoing logs, M0: as combining the equations has been made easier, A0: M1: If they substitute their x to find y and vice versa followed by A0: scoring 10010

(a)

M1 Attempts the smaller solution. Accept setting $\frac{1}{2} x=a x+4$ where $a<0$
dM1 Sets $\frac{1}{2} x=-2 x+4$ and proceeds to $x=$.. by collecting terms. Condone errors
A1 $x=\frac{8}{5}$ oe. Accept 1.6
M1 Attempts to find the larger solution. Accept setting $\frac{1}{2} x=5 x+b$ where $b<0$
dM1 Sets $\frac{1}{2} x=5 x-10$ and proceeds to $x=.$. by collecting terms. Condone errors
A1 $\quad x=\frac{20}{9}$ Accept exact equivalents such as $2 \frac{2}{9}$ but not 2.2 or $2 . \dot{2}$
(b)

B1 Any two points correct either in the text or on a sketch. Accept 6 and 2 written on the correct axes
B1 Shape + all four points correct.
Watch for candidates who adapt the given diagram. This is acceptable
A diagram can be labelled with P, Q, R and S and coordinates given for P, Q, R and S in the body of the script. If they are given on the diagram and in the body of the script the diagram takes precedence.

Question Number	Scheme	Marks
15(a)	$\text { Uses Volume }=60000 \quad 60000=\pi r^{2} h \Rightarrow h=\frac{60000}{\pi r^{2}}$	M1
	Subs in $\begin{aligned} S=\pi r^{2}+2 \pi r h & \Rightarrow S=\pi r^{2}+2 \pi r \times \frac{60000}{\pi r^{2}} \\ & \Rightarrow S=\pi r^{2}+\frac{120000}{r} \end{aligned}$	M1 $\mathrm{A} 1^{*}$
		(3)
(b)	$\frac{\mathrm{d} S}{\mathrm{~d} r}=2 \pi r-\frac{120000}{r^{2}}$	M1A1
	$\Rightarrow \frac{\mathrm{d} S}{\mathrm{~d} r}=0 \Rightarrow r^{3}=\frac{120000}{2 \pi} \Rightarrow r=a w r t 27(\mathrm{~cm})$	dM1A1
	$\Rightarrow S=\pi \times 26.7^{"^{2}}+\frac{120000}{" 26.7 "}=\operatorname{awrt} 6730\left(\mathrm{~cm}^{2}\right)$	dM1 A1
(c)	$\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}=2 \pi+\left.\frac{240000}{r^{3}}\right\|_{r=26.7}=a w r t 19>0 \Rightarrow \text { Minimum }$	(6) M1A1
		$\text { (11 marks) }^{(2)}$

(a)

M1 Uses $60000=\pi r^{2} h \Rightarrow h=$.. Alternatively uses $60000=\pi r^{2} h \Rightarrow \pi r h=.$.
Condone errors on the number of zeros but the formula must be correct
M1 Score for the attempt to substitute any $h=$.. or $\pi r h=$.. from a dimensionally correct formula for V
(Eg. $\left.60000=\frac{1}{3} \pi r^{2} h \Rightarrow h=..\right)$ into $S=k \pi r^{2}+2 \pi r h$ where $k=1$ or 2 to get S in terms of r
Allow if S is called something else such as A.
A1* Completes proof with no errors (or omissions) $S=\pi r^{2}+\frac{120000}{r}$.
Allow from $S=\pi r^{2}+\frac{2 V}{r}$ if quoted. $S=$ must be somewhere in the proof
(b) Condone $\frac{\mathrm{d} y}{\mathrm{~d} x}$ throughout (b)

M1 Differentiate the given function and gets one power correct.
A1 $\quad\left(\frac{\mathrm{d} S}{\mathrm{~d} r}\right)=2 \pi r-\frac{120000}{r^{2}}$
dM1 Sets their $\frac{\mathrm{d} S}{\mathrm{~d} r}=0$, multiplies by r^{2} and proceeds with a correct method to $r^{3}=$. .
The $=0$ may be implied by their working
A1 $\quad r=$ awrt 27 or $r=\sqrt[3]{\frac{120000}{2 \pi}}$ but may also be implied by a correct final answer
dM1 Substitutes their positive value of $r=$.. into $S=\pi r^{2}+\frac{120000}{r}$. It is dependent upon the first M1
A1 Awrt 3sf $6730\left(\mathrm{~cm}^{2}\right)$
(c) Condone second derivative appearing as $\frac{\mathrm{d}^{2} y}{\mathrm{dx}}$ for both marks in (c)

M1 Subs positive $r=.$. achieved in part (b) into $\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}=A \pm \frac{B}{r^{3}}, \quad A, B \neq 0$ and calculates its value Alternatively achieves $\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}=A \pm \frac{B}{r^{3}}$ and consider sign
A1 $\quad \frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}=2 \pi+\frac{240000}{r^{3}}$ with a correct substitution of their r in $\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}$ and a statement $\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}>0 \Rightarrow$ Minimum. (This is allowed from incorrect positive r values)
Or $\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}=2 \pi+\frac{240000}{r^{3}}$ with a correct value of $\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}$ for their r and a statement $\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}>0 \Rightarrow$ Minimum.

Or $\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}=2 \pi+\frac{240000}{r^{3}}$ and refers to $r>0$ to state $\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}>0 \Rightarrow$ Minimum.

Alt (c) by using the first derivative either side of 26.7
M1:Attempts to find the numerical value of $\frac{\mathrm{d} S}{\mathrm{~d} r}=A r \pm \frac{B}{r^{2}}$ either side of a positive r achieved in part (b) $\mathrm{A} 1: \frac{\mathrm{dS}}{\mathrm{d} r}=2 \pi r-\frac{120000}{r^{2}}$ and at $r=a \Rightarrow \frac{d S}{d R}<0$ at $r=b \Rightarrow \frac{d S}{d R}>0$ hence Minimum (where $a<26.7<b$)

Alt (c) using the value of S either side of 26.7
M1:Attempts to find the numerical value of $S=\pi r^{2}+\frac{120000}{r}$ either side of a positive r achieved in (b) A1:At $r=a \Rightarrow S_{26.7}<S_{a}$ at $r=a \Rightarrow S_{26.7}<S_{b}$ hence Minimum (where $a<26.7<b$)

Question Number	Scheme	Marks
16(a)	$y=x(x-1)(x-2)=x^{3}-3 x^{2}+2 x \Rightarrow\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)=3 x^{2}-6 x+2$	M1 A1
(b)	When $x=\frac{1}{2}, y=\frac{3}{8}$	
Sub $x=\frac{1}{2}$ into $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right\|_{x=\frac{1}{2}}=\frac{3}{4}-3+2=-\frac{1}{4}$		
Uses gradient and $\left(\frac{1}{2}, \frac{3}{8}\right) \Rightarrow y-"^{\prime} n^{\prime \prime}="-\frac{1}{4} "\left(x-\frac{1}{2}\right) \Rightarrow 4 y+x=2$		
(c)	Later....	M1

(a)

M1 Attempts to multiply out $x(x-1)(x-2)$ and differentiate each term.
Look for a cubic expression being differentiated into a quadratic expression
A1 $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=3 x^{2}-6 x+2$. Accept exact equivalents such as $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=3 x^{2}-4 x-2 x+2$.
(b)

B1 When $x=\frac{1}{2}, y=\frac{3}{8}$ oe
M1 Substitute $x=\frac{1}{2}$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and either states/uses this as a gradient $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)$, not the y-coordinate
M1 Uses their gradient, $x=\frac{1}{2}$ and their $y=\frac{3}{8}$ to find the equation of the tangent.
Look for $y-" \frac{3}{8} "="-\frac{1}{4} "(x-2)$
If the form $y=m x+c$ is used the candidate must proceed as far as $c=.$.
Finding the equation of the normal is M0
A1 $k(4 y+x=2)$ where k is an integer
Alternatively accept a statement that $a=1, b=4$ and $c=2$ or multiples thereof.
If the gradient is found by using $\left(\frac{1}{2}, \frac{3}{8}\right)$ and $(2,0)$, treat as a special case where candidates can potentially score B1 M0 M1 A0. They have not satisfied the demand of the question.
If the candidate uses $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=\frac{1}{2}}$ and the point $(2,0)$ they can score all marks. Score as follows
1st M1: Substitute $x=\frac{1}{2}$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and either states /uses as a gradient $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)$ and not the y-coordinate
2nd M1: Uses their gradient with $(2,0)$ to form the equation of the tangent
B1: Any correct equation followed by A1: $k(4 y+x=2)$ where k is an integer.

Question Number	Scheme	Marks
(c)	Candidate considers area under curve from $x=\frac{1}{2}$ and $x=1$	M1 A1
Main	$\int y \mathrm{~d} x=\frac{x^{4}}{4}-3 \frac{x^{3}}{3}+2 \frac{x^{2}}{2}(+c)$	M1
Area under curve between $x=\frac{1}{2}$ and $x=1\left[\frac{x^{4}}{4}-3 \frac{x^{3}}{3}+2 \frac{x^{2}}{2}\right]_{\frac{1}{2}}^{1}=\left(\frac{7}{64}\right)$		
Area under line between $x=\frac{1}{2}$ and $x=2=\frac{1}{2} \times\left(2-\frac{1}{2}\right) \times \frac{3}{8}=\left(\frac{9}{32}\right)$	M1	
	Area of $R=\frac{1}{2} \times\left(2-\frac{1}{2}\right) \times \frac{3}{8}-\left[\left(\frac{1}{4}-1+1\right)-\left(\frac{1}{64}-\frac{1}{8}+\frac{1}{4}\right)\right]=\frac{9}{32}-\frac{7}{64}=\frac{11}{64}$	dM1A1
		(12 marks)

(c) Main scheme: Use if the candidate attempts to find the area under the curve

M1 Attempts $\int x(x-1)(x-2) \mathrm{d} x$ by first multiplying and then integrating to a quartic form
A1 Correct and unsimplified $=\frac{x^{4}}{4}-3 \frac{x^{3}}{3}+2 \frac{x^{2}}{2}(+c)$
M1 Uses limits of $x=\frac{1}{2}$ and $x=1$ with their answer to $\int x(x-1)(x-2) \mathrm{d} x$.
M1 Uses the correct method to find the area under the line between $x=\frac{1}{2}$ and $x=2$
If the triangle is used then look for $\frac{1}{2} \times\left(2-\frac{1}{2}\right) \times " \frac{3}{8} "=\left(\frac{9}{32}\right)$ or $\frac{1}{2} \times \frac{3}{2} \times{ }^{\prime} \frac{3}{8} "=\left(\frac{9}{32}\right)$
If the equation of the line is used it must be correct. Look for an evaluation of $\int_{\frac{1}{2}}^{2}\left(\frac{1}{2}-\frac{1}{4} x\right) \mathrm{d} x=\left[\frac{1}{2} x-\frac{1}{8} x^{2}\right]_{\frac{1}{2}}^{2}$ with correct limits and correct integration
dM1 Score for the correct combination of areas including the limits. \qquad in this case the above areas must be subtracted. It is dependent upon all 3 M's
A1 $\frac{11}{64}$

Question Number	Scheme	Marks
(c)	Candidate considers area between line and curve $x=\frac{\mathbf{1}}{\mathbf{2}}$ to $\boldsymbol{x}=\mathbf{1}$	
ALT 1	$\int\left(" \frac{1}{2}-\frac{1}{4} x^{\prime \prime}\right)-(x(x-1)(x-2)) \mathrm{d} x=\left(\frac{1}{2} x-\frac{1}{8} x^{2}\right)-\left(\frac{x^{4}}{4}-3 \frac{x^{3}}{3}+2 \frac{x^{2}}{2}\right)$	M1A1
	Area between line and curve between $x=\frac{1}{2}$ and $x=1$ is	
	$\left[\left(\frac{1}{2} x-\frac{1}{8} x^{2}\right)-\left(\frac{x^{4}}{4}-3 \frac{x^{3}}{3}+2 \frac{x^{2}}{2}\right)\right]_{\frac{1}{2}}^{1}=\left(\frac{3}{64}\right)$	M1
	Area under line between $x=1$ and $x=2=\frac{1}{2} \times(2-1) \times \frac{1}{4}=\frac{1}{8}$	M1
Area of $\mathbf{R}=\frac{1}{8}+\left[\left(\frac{1}{8}\right)-\left(\frac{5}{64}\right)\right]=\frac{1}{8}+\frac{3}{64}=\frac{11}{64}$	dM1A1	

M1 Attempts $\int\left(" \frac{1}{2}-\frac{1}{4} x^{\prime \prime}\right)-(x(x-1)(x-2)) \mathrm{d} x$ either way around, multiplies out and integrates to a quartic form
A1 Answer correct $\left(\frac{1}{2} x-\frac{1}{8} x^{2}\right)-\left(\frac{x^{4}}{4}-3 \frac{x^{3}}{3}+2 \frac{x^{2}}{2}\right)$ or its simplified form $\left(\frac{1}{2} x-\frac{9}{8} x^{2}+x^{3}-\frac{1}{4} x^{4}\right)$

Do not follow through on their tangent line in this case

M1 Uses the limits $x=\frac{1}{2}$ and $x=1$ with their answer to $\int\left(" \frac{1}{2}-\frac{1}{4} x^{\prime \prime}\right)-(x(x-1)(x-2)) \mathrm{d} x$
M1 Uses the correct method to find the area under the line between $x=1$ and $x=2$
If the triangle is used look for $\frac{1}{2} \times(2-1) \times \frac{1}{4}=\left(\frac{1}{8}\right)$
If the equation of the line is used it must be correct. Look for an evaluation of $\int_{1}^{2}\left(\frac{1}{2}-\frac{1}{4} x\right) \mathrm{d} x=\left[\frac{1}{2} x-\frac{1}{8} x^{2}\right]_{1}^{2}$ with correct limits and integration.
dM1 Score for the correct combination of areas including limits.....in this case the above areas must be added. It is dependent upon all 3 M's

A1 $\frac{11}{64}$

| ALT 2 | $\int\left(" \frac{1}{2}-\frac{1}{4} x^{\prime \prime}\right)-(x(x-1)(x-2)) \mathrm{d} x=\left(\frac{1}{2} x-\frac{1}{8} x^{2}\right)-\left(\frac{x^{4}}{4}-3 \frac{x^{3}}{3}+2 \frac{x^{2}}{2}\right)$ |
| :--- | :--- | :--- |
| Total area between line and curve $=\left[\left(\frac{1}{2} x-\frac{1}{8} x^{2}\right)-\left(\frac{x^{4}}{4}-3 \frac{x^{3}}{3}+2 \frac{x^{2}}{2}\right)\right]_{\frac{1}{2}}^{2}=\left(\frac{27}{64}\right)$ | M1A1 |
| | M1 |
| Area under curve $=\left[\frac{x^{4}}{4}-3 \frac{x^{3}}{3}+2 \frac{x^{2}}{2}\right]_{1}^{2}=\left(-\frac{1}{4}\right)$ | M1 |
| Area of $\mathbf{R}=\frac{27}{64}-\frac{1}{4}=\frac{11}{64}$ | dM1A1 |

M1 Attempts $\int\left(" \frac{1}{2}-\frac{1}{4} x^{\prime \prime}\right)-(x(x-1)(x-2)) \mathrm{d} x$ either way around, multiplies out and integrates to a quartic form
A1 Answer correct $\left(\frac{1}{2} x-\frac{1}{8} x^{2}\right)-\left(\frac{x^{4}}{4}-3 \frac{x^{3}}{3}+2 \frac{x^{2}}{2}\right)$ or its simplified form $\left(\frac{1}{2} x-\frac{9}{8} x^{2}+x^{3}-\frac{1}{4} x^{4}\right)$

Do not follow through on their tangent line in this case

M1 Uses the limits $x=\frac{1}{2}$ and $x=2$ with their answer to $\int\left(" \frac{1}{2}-\frac{1}{4} x^{\prime \prime}\right)-(x(x-1)(x-2)) \mathrm{d} x$
M1 Evaluates $\pm \int_{1}^{2} x(x-1)(x-2) \mathrm{d} x= \pm\left[\frac{x^{4}}{4}-x^{3}+x^{2}\right]_{1}^{2}$ Both the limits and integration must be correct
dM1 Score for the correct combination of areas including limits.....in this case you need to see the equivalent to $\left(\frac{27}{64}\right)+-\frac{1}{4}$ or $\left(\frac{27}{64}\right)-\left|-\frac{1}{4}\right|$ It is dependent upon all 3 M 's
A1 $\frac{11}{64}$
Useful guide: (but please use the scheme and notes)

1) Scan through candidates answer to ascertain whether they are integrating just the curve or the line the curve to decide the method. Looking at their limits of integration can help you decide between alt 1 and alt 2
2) Marks are awarded like this

M1: Attempt to integrate appropriate function to reach a quartic
A1: Correct answer to the integration. There is no follow through
M1: Correct limits used in the integrated function
M1: Finds area under line (main or alt 1) either by using the correct triangle or using the correct f function and limits.
Finds area under curve (alt 2) using correct function and limits
dM1: Correct combination of areas. It is dependent upon all 3 M's
A1: Correct answer
If an incomplete method is shown always score by the method that gives the candidate more marks. If you cannot determine the method that a candidate has used then please use the review system and your team leader will advise.

