edexcel

Mark Scheme (Results)
January 2016

International Advanced Level
in Core Mathematics C12 (WMA01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2016
Publications Code IA043145
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 125 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- $\boldsymbol{*}$ The answer is printed on the paper or ag- answer given
- \quad or $\mathrm{d} . .$. The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the
subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. If you are using the annotation facility on ePEN, indicate this action by 'MR' in the body of the script.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. Marks for each question are scored by clicking in the marking grids that appear below each student response on ePEN. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of ' 0 ' or ' 1 ' for each mark, or "trait", as shown:

	0	1
aM		\bullet
aA	\bullet	
bM 1		\bullet
bA 1	\bullet	
bB	\bullet	
bM 2		\bullet
bA 2		\bullet

9. Be careful when scoring a response that is either all correct or all incorrect. It is very easy to click down the ' 0 ' column when it was meant to be ' 1 ' and all correct.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation
$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|, \quad$ leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $x=\ldots$
2. Formula

Attempt to use correct formula (with values for a, b and c).
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, \quad q \neq 0, \quad$ leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$
2. Integration

Power of at least one term increased by $1 .\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

J anuary 2016
 Core Mathematics C12
 Mark Scheme

Question Number	Scheme	Marks
1(a)	$u_{2}=2 \times 2-6=-2, \quad u_{3}=2 \times(-2)-6=-10$ or $u_{3}=2 \times(2 \times 2-6)-6=-10$	M1 A1
		[2]
(b)	$\sum_{i=1}^{4} u_{i}=2+(-2)+(-10)$	M1
	+ (-26)	A1ft
	$=-36$	A1
		[3]
		5 marks
	Notes	
(a)	M1: Attempt to use the given formula correctly at least once. This may be implied by a correct value for u_{2} or a value for u_{3} which follows through from their u_{2} or implied by correct answer for u_{3} A1: u_{3} correct and no incorrect work seen	
(b)	M1: Uses sum of the 3 numerical terms from part (a) (may be implied by correct answer for their terms). Attempting to sum an AP here is M0. A1ft: obtains u_{4} correctly (may be attempted in part (a)) and adds to sum of the first three terms from part (a) A1: -36 cao (-36 implies both A marks)	
	Special Cases: Some candidates attempt $u_{2}+u_{3}+u_{4}+u_{5}$ in part (b) - allow M1 only Some candidates mis-copy one of their terms from part (a) into part (b) - allow M1 only	

Question Number	Scheme	Marks
3.	$\int\left(6 x-3-\frac{2}{\sqrt{x}}\right) \mathrm{d} x=\frac{6 x^{2}}{2}-3 x-\frac{2 x^{\frac{1}{2}}}{\frac{1}{2}}+(c)$	M1 A1 A1
	$\left[\frac{6 x^{2}}{2}-3 x-\frac{2 x^{\frac{1}{2}}}{\frac{1}{2}}+(c)\right]_{1}^{4}=(28)-(-4)=32$	M1 A1
		[5]
		5 marks
	Notes	
	M1: Attempt to integrate original $\mathrm{f}(x)$ - at least one power increased $x^{n} \rightarrow x^{n+1}$ A1: Two of the three terms correct un-simplified or simplified (Constant not required) A1: All three terms correct un-simplified or simplified (Constant not required) M1: Substitutes limits 4 and 1 into their 'changed' function and subtracts the right way round A1: 32 cao ($\mathbf{3 2}+\mathbf{c}$ is $\mathbf{A 0}$) The question requires the use of calculus so a correct answer only scores no marks)	

Question Number	Scheme	Marks
4.	$a+3 d=3$ OR $\frac{6}{2}(2 a+5 d)=27$	M1 A1
	$a+3 d=3$ AND $\frac{6}{2}(2 a+5 d)=27$	A1
	Eliminates one variable to find a or d from 2 equations in a and d	dM1
	Obtains $a=12$ or $\quad d=-3$	A1
	Obtains $a=12 \quad$ and $\quad d=-3$	A1
		[6]
		6 marks
	Notes	

M1A1: Writes down a correct (possibly un-simplified) equation for $4^{\text {th }}$ term or for sum of the first 6 terms. Allow the individual terms to be added for the sum e.g. $a+a+d+a+2 d+a+3 d+a+4 d+a+5 d=27$
A1cao: A correct equation for $4^{\text {th }}$ term and a correct equation for the sum (allow either to be un-simplified) dM1: Eliminates one variable from two equations in a and d to find either a or d (see note below)
A1: One variable correct (This implies previous M mark)
A1: Both variables correct
Note that if both equations are correct and there is no working and the values of a and d are both incorrect, this scores dM 0 . Also if either or both equations is/are incorrect and values of a and d are obtained with no working this also scores dM 0 .

Question Number	Scheme	Marks
6.	$\mathrm{f}(x)=x^{3}+x^{2}-12 x-18$	
(a)	Attempts $\mathrm{f}(\pm 3)$	M1
	$\{\mathrm{f}(-3)=\} \quad 0$ so $(x+3)$ is a factor of $\mathrm{f}(x)$.	A1
		[2]
(b)	$x^{3}+x^{2}-12 x-18=(x+3)\left(x^{2}+\ldots\right.$	M1
	$x^{3}+x^{2}-12 x-18=(x+3)\left(x^{2}-2 x-6\right)$ or $x^{3}+x^{2}-12 x-18=(x+3)(x-1+\sqrt{7})(x-1-\sqrt{7})$ oe	A1
		[2]
(c)	$(x=)-3$	B1
	$x=\frac{2 \pm \sqrt{4+24}}{2}=1 \pm \sqrt{7}$ or by completion of square $(x-1)^{2}=7$ so $x=1 \pm \sqrt{7}$ or $(x-1+\sqrt{7})(x-1-\sqrt{7})=0 \Rightarrow x=1 \pm \sqrt{7}$	M1 A1
		[3]
		7 marks
	Notes	
(a)	M1: As on scheme - must use the factor theorem A1: for seeing 0 and conclusion which may be in a preamble and may be minimal e.g. QED, proven, true, tick etc. There must be no obvious errors but need to see at least $(-3)^{3}+(-3)^{2}-12(-3)-18=0$ for A1 but allow invisible brackets e.g. $-3^{3}+-3^{2}-12(-3)-18=0$ provided there are no obvious errors.	
(b)	M1: Uses $(x+3)$ as a factor and obtains correct first term of quadratic factor by division or any other method e.g. comparing coefficients or finding roots and factorising A1: Correct quadratic and writes $(x+3)\left(x^{2}-2 x-6\right)$ or $(x+3)(x-1+\sqrt{7})(x-1-\sqrt{7})$ oe Note that this work may be done in part (a) and the result re-stated here.	
(c)	B1: States -3 M1: Method for finding their roots. Allow the usual rules applied to their quadratic. This mark is for finding the roots and not for just finding factors. You may need to check their roots if no working is shown e.g. if they give decimal answers (3.645..., -1.645...) A1: need both roots. Correct answer implies M mark. Allow $x=\frac{2 \pm \sqrt{28}}{2}$ If they give extra roots e.g. $x=-3,-1, \frac{2 \pm \sqrt{28}}{2}$, lose the final A mark (B1M1A0)	

Question Number	Scheme ${ }^{\text {a }}$ Marks
7(a)	$(1+k x)^{8}=1+\binom{8}{1}(k x)+\binom{8}{2}(k x)^{2}+\binom{8}{3}(k x)^{3} \ldots \quad$ M1
	$=1+8 k x,+28 k^{2} x^{2},+56 k^{3} x^{3}+\ldots$ B1, A1, A1
	[4]
(b)	Sets " $56 k^{3}$ " $=1512$ and obtains $k^{3}=\frac{1512}{56} \quad$ M1 A1
	So $k=3 \times$ A1
	[3]
	7 marks
	Notes
(a)	M1: The method mark is awarded for an attempt at the Binomial expansion to get the third and/or fourth term. The correct binomial coefficient needs to be combined with the correct power of x. Ignore bracket errors and omission of or incorrect powers of k. Accept any notation for ${ }^{8} C_{2}$ or ${ }^{8} C_{3}$, e.g. $\binom{8}{2}$ or $\binom{8}{3}$ or 28 or 56 from Pascal's triangle. This mark may be given if no working is shown, but either or both of $28 k^{2} x^{2}$ and $56 k^{3} x^{3}$ is found. B1: This is for $1+8 k x$ and not for just $1+\binom{8}{1}(k x)$ A1: is cao and is for $28 k^{2} x^{2}$ or for $28(k x)^{2}$ A1: is cao and is for $56 k^{3} x^{3}$ or for $56(k x)^{3}$ Any extra terms in higher powers of x should be ignored. Allow terms separated by commas or given as a list for all the marks.
(b)	M1: Sets their coefficient of $x^{3}=1512$ and obtains $k^{n}=.$. where n is 1 or 3 A1: $k^{3}=\frac{1512}{56}$ or equivalent e.g. 27 (May be implied by their final answer) A1: $k=3$ cao (± 3 is A0) Note (b) can be marked independently of part (a) so part (a) might be incorrect or not attempted but they have $56 k^{3}=1512$ etc. in (b)

Question Number	Scheme	Marks
9.(a)	$130000 \times(1.02)=132600 *$ or $2 \%=2600$ and $130000+2600=132600 *$	B1
		[1]
(b)	($r=$) 1.02	B1
		[1]
(c)	Uses $130000 \times(1.02)^{N-1}>260000 \quad$ or $130000 \times(1.02)^{N-1}=260000$	M1
	So (1.02$)^{N-1}>2$	A1
	$\begin{gathered} (N-1) \log _{10}(1.02)>\log _{10} 2 \text { or }(N-1) \log _{10}(1.02)=\log _{10} 2 \\ \text { or }(N-1)>\log _{1.02} 2 \text { or }(N-1)=\log _{1.02} 2 \end{gathered}$	M1
	$N>\frac{\log _{10} 2}{\log _{10}(1.02)}+1 *$	A1cso
		[4]
(d)	$(N=) 37$	B1
		[1]
		7 marks
	Notes	
(a)	B1: A reason must be provided for this mark as the answer is printed. Allow both $130000 \times(1+2 \%)$ and $130000 \times(102 \%)$ as both give the correct answer when entered this way on a calculator. But not $130000 \times 1+2 \%$	
(b)	B1: For 1.02 oe e.g. allow $\frac{51}{50}$	
(c)	M1: Correct inequality or equality - may use r or their r or 1.02 and may use N or n. A1: $(1.02)^{N-1}>2$ cao. Allow $(1.02)^{n-1}>2$ M1: Correct use of logs power rule on their previous line which must have come from using the $n^{\text {th }}$ term of a GP. Condone missing brackets for this mark e.g. $N-1 \log _{10}(1.02)>\log _{10} 2$. (May follow use of $=$ instead of $>$ or use of r instead of 1.02 or use of N instead of $N-1$). These cases can get M0A0M1. Allow the base to be absent or just 'In' for this mark. If the inequality sign is reversed at this point, still allow the M1. A1*: Answer is exactly as printed (including the bases) and all inequality work should be correct and all previous marks scored and no missing brackets earlier. Allow this mark to score from a correct previous line provided the power rule is used. So fully correct work leading to $(N-1) \log _{10}(1.02)>\log _{10} 2 \Rightarrow N>\frac{\log _{10} 2}{\log _{10}(1.02)}+1$ scores the final M1A1 but $(1.02)^{N-1}>2 \Rightarrow N>\frac{\log _{10} 2}{\log _{10}(1.02)}+1$ scores M0A0 (no explicit use of power rule)	
(d)	B1: Only need $N=37$ - may follow trial and error or uses logs to a different base. Do not allow $N \geq 37$ or $N>37$ or $N=37.0$	

Question Number	Scheme	Marks
	$y=12 x^{\frac{5}{4}}-\frac{5}{18} x^{2}-1000$	
10.(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=12 \times \frac{5}{4} x^{\frac{1}{4}}-\frac{10}{18} x$	M1 A1
		[2]
(b)	Put $12 \times \frac{5}{4} x^{\frac{1}{4}}-\frac{10}{18} x=0$ so $x^{n}=k \quad(n \in \square, k \neq 0)$	M1
	$\therefore x=()^{\frac{4}{3}}$	dM1
	$\therefore x=81$ (Ignore $\boldsymbol{x}=\mathbf{0}$ if given as a second solution)	A1
	So $y=12(81)^{\frac{5}{4}}-\frac{5}{18}(81)^{2}-1000$ i.e. $y=93.5$	dM1A1
		[5]
(c)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} \mathrm{x}^{2}}==\frac{15}{4} x^{-\frac{3}{4}}-\frac{5}{9}$	B1ft
	Substitutes their non-zero x (positive or negative) into their second derivative.	M1
	Obtains maximum after correctly substituting 81 into correct second derivative to give correct negative quantity $-\frac{15}{36}$ o.e. or decimal e.g. $-0.4 \ldots$ (see note below) and considers negative sign deducing maximum. Note that a correct second derivative followed by $x=81 \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{15}{4} 81^{-\frac{3}{4}}-\frac{5}{9}=-\frac{5}{12}$ therefore maximum scores B1M1A0 here.	A1
		[3]
		10 marks
	Notes	
(a)	M1: Attempt to differentiate - power reduced by one $x^{n} \rightarrow x^{n-1}$ (but not just $1000 \rightarrow 0$) A1: Two correct terms and no extra terms. Terms may be un-simplified.	
(b)	M1: Puts derivative $=0$ and attempts to solve to obtain an equation of the form $x^{n}=k$ where n is real and k is non-zero dM1: Correct processing to obtain a value for x. (Dependent on the first method mark). This mark can only be awarded for processing an equation of the form $a x^{\frac{1}{4}}-b x=0$ i.e. their derivative must have the correct powers of x. $\text { E.g. } a x^{\frac{1}{4}}-b x=0 \Rightarrow x^{\frac{1}{4}}\left(a-b x^{\frac{3}{4}}\right) \Rightarrow x=k^{\frac{4}{3}} \text { or } a x^{\frac{1}{4}}-b x=0 \Rightarrow a x^{\frac{1}{4}}=b x \Rightarrow p x=q x^{4} \Rightarrow x=\sqrt[3]{k}$ Do not allow incorrect squaring e.g. $a x^{\frac{1}{4}}-b x=0 \Rightarrow p x-q x^{4}=0$ etc. A1: cao dM1: Substitutes their positive value for x into $y=\ldots$ and not into $\frac{\mathrm{d} y}{\mathrm{~d} x}=\ldots$ (Dependent on the first method mark) A1: cao If $x=81$ appears from no working following a correct derivative score M1M0A0 then allow full recovery.	
(c)	B1ft: Correct follow through second derivative M1: Substitutes their non-zero x (positive or negative) into their second derivative. Note: Solving $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0$ is M0 A1cso: Completely correct work ($-\frac{5}{12}$ o.e.) . Note that o.e. could be $=\frac{15}{4} \times \frac{1}{27}-\frac{5}{9}$ or $\frac{15}{108}-\frac{5}{9}$ or $\frac{5}{36}-\frac{5}{9}$ or - $0.4 \ldots$...but it has to be correct for the final mark.	

Question Number	Scheme ${ }^{\text {a }}$ Marks
	(a) and (b) can be marked together
12(a)	$\mathrm{f}(x)=\frac{16+24 \sqrt{x}+9 x}{x} \quad$ M1
	$\mathrm{f}(x)=16 x^{-1}+24 x^{-\frac{1}{2}}+9 \quad$ M1A1A1
	[4]
(b)	$\mathrm{f}^{\prime}(x)=-16 x^{-2}-12 x^{-\frac{3}{2}} \quad$ M1 A1
	[2]
(c)	When $x=4, \quad y=25 \quad$ B1
	$\mathrm{f}^{\prime}(4)=-1-\frac{12}{8}=-2 \frac{1}{2} \quad$ M1
	Equation of tangent is $y-25=-\frac{5}{2}(x-4) \quad$ M1 A1
	[4]
	10 marks
	Notes
(a)	M1: expands numerator into a three (or four) term quadratic in $\sqrt{ } x$ (allow $(\sqrt{x})^{2}$ for x) M1: Divides at least one term in numerator by x correctly following an attempt at expansion. May just be $\frac{16}{x}$. A1: Two correct terms A1: All terms correct
(b)	M1: Evidence of differentiation $x^{n} \rightarrow x^{n-1}$ of an expression of the form $A x^{-1}$ or $B x^{k}$ so $x^{-1} \rightarrow x^{-2}$ or $x^{k} \rightarrow x^{k-1} \quad(k \neq 1)$ and not just $C \rightarrow 0$. Differentiating top and bottom separately is M0. Note this is a hence and so attempts at e.g. use of the quotient rule scores M0. A1: cao and cso (May be un-simplified) Note: An incorrect constant in part (a) (e.g. 3 instead of 9) will fortuitously give the same derivative so scores M1A0 if otherwise correct.
(c)	B1: 25 only M1: Substitute $x=4$ into their derived function M1: Uses their " 25 " and their "gradient" which has come from calculus (not the normal gradient) and $x=4$ to give correct ft equation of line. If using $y=m x+c$ must at least obtain a value for c A1: any correct form e.g. $y=-\frac{5}{2} x+35, \quad 5 x+2 y-70=0$ BUT NOT JUST $\frac{y-25}{x-4}=-\frac{5}{2}$, this scores M1A0 Note: An incorrect constant in part (a) (e.g. 3 instead of 9) will fortuitously give the correct answer in (c) and will lose the final A mark if otherwise correct.

Question Number	Scheme	Marks
14(i)	$\begin{gathered} \quad \log _{a} x+\log _{a} 3=\log _{a} 27-1 \quad \text { so } \quad \log _{a} \frac{3 x}{27}=-1 \\ \text { Or } \log _{a} x+\log _{a} 3=\log _{a} 27-\log _{a} a \quad \text { so } \quad \log _{a} 3 x=\log _{a} \frac{27}{a} \\ \text { Or } \log _{a} x+1=\log _{a} 27-\log _{a} 3=\log _{a} 9 \quad \text { so } \quad \log _{a} a x=\log _{a} 9 \end{gathered}$	M1 A1
	$\frac{3 x}{27}=a^{-1}$	M1
	$x=9 a^{-1}$ or $\frac{9}{a}$	A1
		[4]
(ii)	$x^{2}-7 x+12=0$ and attempt to solve to give $x=\ldots$ or $\log _{5} y=\ldots$ (implied by correct answers)	M1
	$x\left(\right.$ or $\left.\log _{5} y\right)=3$ and 4	A1
	$y=5^{3}$ or 5^{4}	dM1
	$y=125$ and 625	A1
		[4]
		8 marks
	Notes	
(i)	M1: Uses sum or difference of logs correctly e.g. $\log x+\log 3=\log 3 x$ or $\log 27-\log 3=\log 9$ or $\log 27-\log x=\log \frac{27}{x}$ etc. or writes 1 as $\log _{a} a$ A1: Uses two rules correctly to obtain correct log equation M1: Removes logs correctly to obtain an equation connecting x and a A1: Correct simplified answer Note that some candidates interpret $\log _{a} 27-1$ as $\log _{a}(27-1)$. This can score a maximum of 1 out of 4 if they have $\log x+\log 3=\log 3 x$ Note that $\log _{a} x+\log _{a} 3=\log _{a} 27-1$ so $\frac{\log _{a} 3 x}{\log _{a} 27}=-1 \Rightarrow \frac{3 x}{27}=a^{-1}$ etc. scores M1A0M0A0 Note that $\log _{a} x+\log _{a} 3=\log _{a} 27-1 \quad$ so $\frac{\log _{a} x \log _{a} 3}{\log _{a} 27}=-1 \Rightarrow \frac{3 x}{27}=a^{-1}$ etc. scores no marks	
(ii)	M1: Recognise and attempt to solve quadratic A1: Obtain both 3 and 4 (Both correct implies M1A1) dM1: Uses powers correctly to find a value for y (Dependent on first method mark) A1: Both values correct	

Question Number	Scheme	Marks
16(a)	$\frac{1}{2} x+1=x^{2}-4 x+3$	M1
	$2 x^{2}-9 x+4=0 \Rightarrow x=1 / 2$ or $x=4$	dM1 A1
	$y=5 / 4$ or $y=3$	dM1 A1
		[5]
(b)	Curve meets x-axis at $x=3$ and at $x=1$ (No need to see $\boldsymbol{y}=\mathbf{0}$)	M1 A1
		[2]
	NOTE that the subscripted A's refer to areas on the diagram given at the end of the scheme. All the method marks are for their $x=1 / 2,4,1$ and 3	
$\begin{gathered} (c) \\ \text { Way } 1 \end{gathered}$	$\int x^{2}-4 x+3 \mathrm{~d} x=\frac{1}{3} x^{3}-2 x^{2}+3 x$	M1 A1
	Use limits 1 and $1 / 2\left[\left(\frac{1}{3}(1)^{3}-2(1)^{2}+3 \times 1\right)-\left(\frac{1}{3}\left(\frac{1}{2}\right)^{3}-2 .\left(\frac{1}{2}\right)^{2}+3 \times\left(\frac{1}{2}\right)\right)\right] A_{1}$	M1
	Use limits 4 and $3 \quad\left[\left(\frac{1}{3}(4)^{3}-2(4)^{2}+3 \times(4)\right)-\left(\frac{1}{3}(3)^{3}-2 .(3)^{2}+3 \times(3)\right)\right] A_{2}$	M1
	$\begin{gathered} \text { Area of trapezium }= \\ \frac{1}{2}(a+b) \times h=\frac{1}{2}\left(\frac{5}{4}+3\right) \times\left(4-\frac{1}{2}\right)=\ldots \text { or } \int_{\frac{1}{2}}^{4}\left(\frac{1}{2} x+1\right) \mathrm{d} x=\left[\frac{1}{4} x^{2}+x\right]_{\frac{1}{2}}^{4}=(4+4)-\left(\frac{1}{16}+\frac{1}{2}\right)=\ldots \end{gathered}$	M1
	$7.4375 \quad\left(7 \frac{7}{16}\right)\left(\frac{119}{16}\right)$ (may be implied by correct final answer)	A1
	Uses correct combination of correct areas. Area of region $=$ Area of trapezium $-A_{1}-A_{2}$ Dependent on all previous method marks	ddddM1
	$=7.4375-\frac{7}{24}-\frac{4}{3}=\frac{93}{16}$ or 5.8125	A1
		[8]
(c) Way 2	Alternative method using "line - curve" and subtracting area below x - axis	
	$\int-x^{2}+\frac{9}{2} x-2 \mathrm{~d} x=-\frac{x^{3}}{3}+\frac{9}{4} x^{2}-2 x$ or $\int x^{2}-\frac{9}{2} x+2 \mathrm{~d} x=\frac{x^{3}}{3}-\frac{9}{4} x^{2}+2 x$	M1A1
	Use limits $1 / 2$ and 4 on this subtracted integration $\left(A_{3}+A_{4}+A_{5}+A_{6}\right)=6 \frac{2}{3}+\frac{23}{48}=\ldots$	M1
	$\pm \int x^{2}-4 x+3 \mathrm{~d} x= \pm\left(\frac{1}{3} x^{3}-2 x^{2}+3 x\right)$	M1
	Use limits 1 and 3 on their integrated curve to obtain $A_{6}= \pm \frac{4}{3}$	M1A1
	Uses correct combination of correct areas. Area of region $=\left(A_{3}+A_{4}+A_{5}+A_{6}\right)-A_{6}$ Dependent on all previous method marks	ddddM1
	$6 \frac{2}{3}+\frac{23}{48}-\frac{4}{3}=\frac{93}{16}$	A1
		[8]
$\begin{gathered} \text { (c) } \\ \text { Way } 3 \end{gathered}$	Alternative method using "line - curve" for areas A_{3} and A_{4} and adding smaller trapezium	
	$\int-x^{2}+\frac{9}{2} x-2 \mathrm{~d} x=-\frac{x^{3}}{3}+\frac{9}{4} x^{2}-2 x$ or $\int x^{2}-\frac{9}{2} x+2 \mathrm{~d} x=\frac{x^{3}}{3}-\frac{9}{4} x^{2}+2 x$	M1A1
	Use limits 1 and $1 / 2\left[\left(-\frac{1}{3}(1)^{3}+\frac{9}{4}(1)^{2}-2 \times 1\right)-\left(-\frac{1}{3}\left(\frac{1}{2}\right)^{3}+\frac{9}{4}\left(\frac{1}{2}\right)^{2}-2 \times \frac{1}{2}\right] A_{3}\right.$	M1
	Use limits 4 and $3\left[\left(-\frac{1}{3}(4)^{3}+\frac{9}{4}(4)^{2}-2 \times 4\right)-\left(-\frac{1}{3}(3)^{3}+\frac{9}{4}(3)^{2}-2 \times 3\right] A_{4}\right.$	M1
	$\begin{gathered} \text { Area of trapezium }= \\ \frac{1}{2}(a+b) \times h=\frac{1}{2}\left(\frac{3}{2}+\frac{5}{2}\right) \times(3-1)=\ldots \text { or } \int_{1}^{3}\left(\frac{1}{2} x+1\right) \mathrm{d} x=\left[\frac{1}{4} x^{2}+x\right]_{1}^{3}=\left(\frac{9}{4}+3\right)-\left(\frac{1}{4}+1\right)=\ldots \end{gathered}$	M1
	$=4$	A1
	Uses correct combination of correct areas. Area of region $=A_{3}+A_{4}+A_{5}$ Dependent on all previous method marks	ddddM1
	$\frac{19}{48}+\frac{17}{12}+4=\frac{93}{16}$	A1
		[8]

(c) Way 4	Alternative method: Finds area of larger trapezium and subtracts $A_{1}+A_{2}$ which is found by integrating quadratic between $1 / 2$ and 4 and adding area below x-axis	
	$\int x^{2}-4 x+3 \mathrm{~d} x=\frac{1}{3} x^{3}-2 x^{2}+3 x$	M1 A1
	Use limits 4 and $1 / 2\left[\left(\frac{1}{3}(4)^{3}-2(4)^{2}+3 \times 4\right)-\left(\frac{1}{3}\left(\frac{1}{2}\right)^{3}-2 .\left(\frac{1}{2}\right)^{2}+3 \times\left(\frac{1}{2}\right)\right)\right] A_{1}+A_{2}-A_{6}$ AND Use limits 3 and $1 \pm\left[\left(\frac{1}{3}(3)^{3}-2(3)^{2}+3 \times 3\right)-\left(\frac{1}{3}(1)^{3}-2 .(1)^{2}+3 \times(1)\right)\right] \pm A_{6}$	M2
	$\begin{gathered} \text { Area of trapezium }= \\ \frac{1}{2}(a+b) \times h=\frac{1}{2}\left(\frac{5}{4}+3\right) \times\left(4-\frac{1}{2}\right)=\ldots \text { or } \int_{\frac{1}{2}}^{4}\left(\frac{1}{2} x+1\right) \mathrm{d} x=\left[\frac{1}{4} x^{2}+x\right]_{\frac{1}{2}}^{4}=(4+4)-\left(\frac{1}{16}+\frac{1}{2}\right)=\ldots \end{gathered}$	M1
	$7.4375 \quad\left(7 \frac{7}{16}\right)$ (may be implied by correct final answe	A1
	Uses correct combination of correct areas. Area of region $=7.4375-\left(A_{1}+A_{2}-A_{6}+A_{6}\right)$ Dependent on all previous method marks	ddddM1
	$=7.4375-\left(\frac{7}{24}+\frac{4}{3}\right)=\frac{93}{16}$	A1
		[8]
		15 marks
	Notes	
(a)	M1: Puts equations equal or finds x in terms of y and substitutes or substitutes for x dM1: Solves three term quadratic in x to obtain $x=\ldots$ or in y to obtain $y=\ldots$ (Dependent on first M) A1: Both answers correct dM1: Obtains at least one value for y or x (Dependent on first M) A1: Both correct Note: Allow candidates to obtain $x^{2}-\frac{9}{2} x+2=0$ and solve as $(2 x-1)(x-4)=0 \Rightarrow x=\frac{1}{2}, 4$ The coordinates do not need to be 'paired'	
(b)	M1: Attempts to solve $0=x^{2}-4 x+3$ according to the usual rules A1: cao Attempts by T\&I can score both marks for $x=1$ and $x=3$. If one solution is obtained by this, score M1A0	
	For (c) do not allow 'mixed' methods. For their strategy, they must be finding the appropriate areas but apply the method for the scheme that gives the most credit for the candidate.	
(c) Way 1	M1: Attempt at integration of the given quadratic expression $\left(x^{n} \rightarrow x^{n+1}\right.$ at least once) A1: Correct integration of the given quadratic expression M1: Finds area of A_{1} M1: Finds area of A_{2} M1: Finds area of appropriate trapezium A1: Correct area of trapezium 7.4375 ($7 \frac{7}{16}$) ddddM1: correct final combination A1: any correct form of this exact answer	
(c) Way 2	M1: Attempt at integration of \pm (the given quadratic expression - the given line) $\left(x^{n} \rightarrow x^{n+1}\right.$ at least once) A1: Correct integration as shown in the mark scheme. Allow correct answer even if terms not collected nor simplified. If there are sign errors when subtracting before valid attempt at integration, score M1A0 M1: Uses the limits $1 / 2$ and 4 on their subtracted integration M1: Attempts to integrate curve M1: Uses the limits 1 and 3 on the integrated curve C A1: Obtains $A_{6}= \pm \frac{4}{3}$ ddddM1: correct final combination A1: any correct form of this exact answer Note: A common error with this method is to use the limits $1 / 2$ and 4 on their subtracted integration and then stop (this should give an area of $\frac{343}{48}$). This will usually score $3 / 8$ in (c)	

$\begin{gathered} \text { (c) } \\ \text { Way } 3 \end{gathered}$	M1: Attempt at integration of \pm (the given quadratic expression - the given line) ($x^{n} \rightarrow x^{n+1}$ at least once) A1: Correct integration as shown in the mark scheme. Allow correct answer even if terms not collected nor simplified. If there are sign errors when subtracting before valid attempt at integration, score M1A0 M1: Uses the limits $1 / 2$ and 1 on their subtracted integration M1: Uses the limits 4 and 3 on their subtracted integration M1: Finds area of appropriate trapezium A1: Correct area of trapezium 4 ddddM1: correct final combination A1: any correct form of this exact answer
$\begin{gathered} \text { (c) } \\ \text { Way } 4 \end{gathered}$	M1: Attempt at integration of the given quadratic expression $\left(x^{n} \rightarrow x^{n+1}\right.$ at least once $)$ A1: Correct integration of the given quadratic expression M2: Finds area of $A_{1}+A_{2}-A_{6}$ by using the limits $1 / 2$ and 4 and finds area of A_{6} by using the limits 1 and 3 M1: Finds area of appropriate trapezium A1: Correct area of trapezium 7.4375 ($7 \frac{7}{16}$) ddddM1: correct final combination A1: any correct form of this exact answer

Diagram for Question 16

