

Mark Scheme (Results)

January 2016

International Advanced Level in Core Mathematics C12 (WMA01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2016
Publications Code IA043145
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 125.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{\text{will}}$ be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the

subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. If you are using the annotation facility on ePEN, indicate this action by 'MR' in the body of the script.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. Marks for each question are scored by clicking in the marking grids that appear below each student response on ePEN. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of '0' or '1' for each mark, or "trait", as shown:

	0	1
аМ		•
aA	•	
bM1		•
bA1	•	
bB	•	
bM2		•
bA2		•

9. Be careful when scoring a response that is either all correct or all incorrect. It is very easy to click down the '0' column when it was meant to be '1' and all correct.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = \dots$
 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = \dots$

2. Formula

Attempt to use <u>correct</u> formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $(x \pm \frac{b}{2})^2 \pm q \pm c$, $q \neq 0$, leading to $x = ...$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

January 2016 Core Mathematics C12 Mark Scheme

Question Number	Scheme	Marks
1(a)	$u_2 = 2 \times 2 - 6 = -2$, $u_3 = 2 \times (-2) - 6 = -10$ or $u_3 = 2 \times (2 \times 2 - 6) - 6 = -10$	M1 A1
		[2]
(b)	$\sum_{i=1}^{4} u_i = 2 + (-2) + (-10)$	M1
	+(-26)	A1ft
	= -36	A1
		[3]
		5 marks
(2)	Notes Notes	value for
(a)	M1: Attempt to use the given formula correctly at least once. This may be implied by a correct u_2 or a value for u_3 which follows through from their u_2 or implied by correct answer for u_3	value 101
	A1: u_3 correct and no incorrect work seen	
(b)	M1: Uses sum of the 3 numerical terms from part (a) (may be implied by correct answer for the Attempting to sum an AP here is M0.	eir terms).
	A1ft: obtains u_4 correctly (may be attempted in part (a)) and adds to sum of the first three term	ns from part
	(a)	
	A1: -36 cao (-36 implies both A marks)	
	Special Cases:	
	Some candidates attempt $u_2 + u_3 + u_4 + u_5$ in part (b) – allow M1 only	
	Some candidates mis-copy one of their terms from part (a) into part (b) – allow M1 only	

Question Number		Sche	me		Marks
2(i)	Way 1: $\frac{49}{\sqrt{7}} = \frac{7^2}{7^{\frac{1}{2}}} = 7^{2-\frac{1}{2}}$	Way 2: $7\sqrt{7} = 7^{1+\frac{1}{2}}$ $7\sqrt{7} = 7^{1+\frac{1}{2}}$ $7^{a} = \frac{49}{\sqrt{7}} \Rightarrow a = \frac{\log \frac{49}{\sqrt{7}}}{\log 7}$ or $7^{a} = \frac{49}{\sqrt{7}} \Rightarrow a = \log_{7} \frac{49}{\sqrt{7}}$		M1	
	(a =	$= 1\frac{1}{2}$ (oe) or	see answer = $7^{1\frac{1}{2}}$		A1
(**)	W 1			W 2	[2]
(ii)	Way 1: $\frac{10(\sqrt{18}+4)}{(\sqrt{18}-4)(\sqrt{18}+4)}$		$(15\sqrt{2})$	Way 2: $(2 + 20)(\sqrt{18} - 4)$	M1
	$=\frac{\dots}{2}$		$=15\sqrt{36}$	$-60\sqrt{2} + 20\sqrt{18} - 80$	B1
	$\frac{10}{\sqrt{18} - 4} = 5\left(3\sqrt{2} + 4\right) = 15\sqrt{2}$	√2 + 20 *	, , ,	$\frac{60\sqrt{2} + 60\sqrt{2} - 80}{\frac{10}{18 - 4}} = 15\sqrt{2} + 20*$	Alcso
					[3]
		Not	es		5 marks
(i)	Way 1:		Way 2:	Way 3:	·
	1	and adds the A1: cao (ar low work with	if fraction to $7\sqrt{7}$ ir powers of 7 nswer only is 2 ma inexact decimals for $52 = 1.4999 \Rightarrow 6$		o obtain a
(ii)	Way 1: M1: Multiply numerator and denoted $\sqrt{18} + 4$ or equivalent. The statem $\frac{10(\sqrt{18} + 4)}{(\sqrt{18} - 4)(\sqrt{18} + 4)}$ is sufficient by allow $\frac{10(\sqrt{18} + 4)}{\sqrt{18} - 4(\sqrt{18} + 4)}$ unless noted by subsequent B1: Correctly obtains ± 2 in the de (Must follow M1 – i.e. treat as A implied by e.g. $\frac{10(\sqrt{18} + 4)}{18 - 16} = 5$ (A1: Correct result with no errors so $\sqrt{18} = 3\sqrt{2}$ used before their find Note that for Way 1, correct work $5\sqrt{18} + 20$ followed by $15\sqrt{2} + 20$ intermediate step would lose the find $\sqrt{18} + \sqrt{18} = \sqrt{18} = \sqrt{18} + \sqrt{18} = \sqrt$	but do not missing at work. In the mominator $\sqrt{18} + 4$ seen and the mass and the moment $\sqrt{20}$ with no	at least 3 (not ne B1: All 4 terms (A1) A1: Obtains 10 v implied by e.g. 2	Way 2: expand $(15\sqrt{2} + 20)(\sqrt{18} - 20)$ cessarily correct) terms correct (Must follow M1 – in with no errors and $\sqrt{18} = 3\sqrt{20}$ $\sqrt{18} = 60\sqrt{2}$ and conclusions were i.e. not just $10 = 10$	e. treat as $\sqrt{2}$ seen or

Question Number	Scheme	Marks
3.	$\int \left(6x - 3 - \frac{2}{\sqrt{x}}\right) dx = \frac{6x^2}{2} - 3x - \frac{2x^{\frac{1}{2}}}{\frac{1}{2}} + (c)$	M1 A1 A1
	$\left[\frac{6x^2}{2} - 3x - \frac{2x^{\frac{1}{2}}}{\frac{1}{2}} + (c)\right]_1^4 = (28) - (-4) = 32$	M1 A1
		[5]
		5 marks
	Notes	
	M1: Attempt to integrate original $f(x)$ – at least one power increased $x^n \to x^{n+1}$ A1: Two of the three terms correct un-simplified or simplified (Constant not required) A1: All three terms correct un-simplified or simplified (Constant not required) M1: Substitutes limits 4 and 1 into their 'changed' function and subtracts the right way round A1: 32 cao (32 + c is A0) The question requires the use of calculus so a correct answer only scores no marks)	

Question Number	Scheme	Marks
4.	$a + 3d = 3$ OR $\frac{6}{2}(2a + 5d) = 27$	M1 A1
	$a + 3d = 3$ OR $\frac{6}{2}(2a + 5d) = 27$ $a + 3d = 3$ AND $\frac{6}{2}(2a + 5d) = 27$	A1
	Eliminates one variable to find a or d from 2 equations in a and d	dM1
	Obtains $a = 12$ or $d = -3$	A1
	Obtains $a = 12$ and $d = -3$	A1
		[6]
	Notes	6 marks
	M1A1: Writes down a correct (possibly un-simplified) equation for 4 th term or for sum of the first Allow the individual terms to be added for the sum e.g. $a + a + d + a + 2d + a + 3d + a + 4d + a $	5d = 27 implified)

Question number			Scheme				Marks
5(a)	Sketch of a positive sine curve- passing through O with at least one complete cycle from O. Condone different amplitudes above and below the x-axis.			e cycle	B1		
			shown (shape with one from O to $\frac{3\pi}{2}$) and π	•		B1
							[2]
(b)	x	0	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$		
	y	0	0.5	0.866	1		
	May be impl		Uses $\frac{1}{2} \times \frac{\pi}{12}$ Te.g. $\frac{1}{2}h = \frac{1}{2}$	$\left(\frac{\pi}{6} - \frac{\pi}{12}\right) = \frac{1}{2}$	(0.261)		B1
	$\{(0+1)+2(0.5+0.866)\}$			M1			
		0.4885	176576 av	vrt 0.49			A1
				[3] 5 marks			
			N	otes			
(a)	Notes as above B1 : Correct shape with positive gradient through O B1 : Need not see endpoints labelled. Ignore any part of the curve to the left of the origin but if the curve extends beyond $x = \frac{3\pi}{2}$ then then $x = \frac{3\pi}{2}$ must be labelled on the diagram. Labels for $\frac{\pi}{2}$ and π may be on the diagram or in the text but not just in a table of values and must be in radians not degrees. (Allow awrt 1.57 and 3.14) The amplitudes must not be significantly different above and below the x -axis.					s for $\frac{\pi}{2}$ and	
(b)	B1: Need $\frac{\pi}{2}$ or $\frac{\pi}{12}$ or $\frac{\pi}{12}$	to see $\frac{\pi}{24}$ or	½ of 0.261				
	B1: Need $\frac{\pi}{2}$ or to see $\frac{\pi}{24}$ or $\frac{\pi}{2}$ or $\frac{\pi}{2}$ of 0.261 M1: requires first bracket to contain first plus last values and second bracket to include radditional values from the two in the table. If values used in brackets are x values instead of y values this scores M0. A1: for awrt 0.49 Separate trapezia may be used: B1 for $\frac{\pi}{24}$ and M1 for $\frac{\pi}{2}h(a+b)$ used 3 times					no	
	Special Case: Bracketin						
	scores B1 M1 A0 unles full marks can be given Need to see trapezium).	•			n done cor	rectly (then

Question Number	Scheme	Marks
6.	$f(x) = x^3 + x^2 - 12 x - 18$	
(a)	Attempts f(±3)	M1
	$\{f(-3)=\}$ 0 so $(x+3)$ is a factor of $f(x)$.	A1
<i>a</i> >		[2]
(b)	$x^3 + x^2 - 12x - 18 = (x+3)(x^2 + \dots$	M1
	$x^{3} + x^{2} - 12x - 18 = (x+3)(x^{2} - 2x - 6)$ or $x^{3} + x^{2} - 12x - 18 = (x+3)(x-1+\sqrt{7})(x-1-\sqrt{7})$ oe	A1
		[2]
(c)	(x=)-3	B1
	$x = \frac{2 \pm \sqrt{4 + 24}}{2} = 1 \pm \sqrt{7} \text{or by completion of square} (x - 1)^2 = 7 \text{so} x = 1 \pm \sqrt{7}$ $\text{or } \left(x - 1 + \sqrt{7}\right) \left(x - 1 - \sqrt{7}\right) = 0 \Rightarrow x = 1 \pm \sqrt{7}$	M1 A1
		[3]
		7 marks
(-)	Notes	
(a)	M1: As on scheme – must use the <u>factor theorem</u> A1: for seeing 0 and conclusion which may be in a preamble and may be minimal e.g. QED, p tick etc. There must be no obvious errors but need to see at least $(-3)^3 + (-3)^2 - 12(-3) - 18 = 0$ for A	
	invisible brackets e.g. $-3^3 + -3^2 - 12(-3) - 18 = 0$ provided there are no obvious errors.	
(b)	M1: Uses $(x + 3)$ as a factor and obtains correct first term of quadratic factor by division or any method e.g. comparing coefficients or finding roots and factorising	y other
	A1: Correct quadratic and writes $(x+3)(x^2-2x-6)$ or $(x+3)(x-1+\sqrt{7})(x-1-\sqrt{7})$ oe	
	Note that this work may be done in part (a) and the result re-stated here.	
(c)	B1: States -3 M1: Method for finding their roots. Allow the usual rules applied to their quadratic. This marking the roots and not for just finding factors. You may need to check their roots if no shown e.g. if they give decimal answers (3.645, -1.645)	
	A1: need both roots. Correct answer implies M mark. Allow $x = \frac{2 \pm \sqrt{28}}{2}$	
	If they give extra roots e.g. $x = -3$, -1 , $\frac{2 \pm \sqrt{28}}{2}$, lose the final A mark (B1M1A0)	

Question Number	Scheme	Marks
7(a)	$(1+kx)^8 = 1 + \binom{8}{1}(kx) + \binom{8}{2}(kx)^2 + \binom{8}{3}(kx)^3 \dots$	M1
	$=1+8kx,+28k^2x^2,+56k^3x^3+$	B1, A1, A1
		[4]
(b)	Sets " $56k^3$ " = 1512 and obtains $k^3 = \frac{1512}{56}$	M1 A1
	So $k = 3$	A1
		[3]
		7 marks
	Notes	
	term. The correct binomial coefficient needs to be combined with the correct power of x . Ig errors and omission of or incorrect powers of k . Accept any notation for ${}^{8}C_{2}$ or ${}^{8}C_{3}$, e.g. $\binom{8}{2}$ 28 or 56 from Pascal's triangle. This mark may be given if no working is shown, but either or both of $28k^{2}x^{2}$ and $56k^{3}x^{3}$ is B1: This is for $1 + 8kx$ and not for just $1 + \binom{8}{1}(kx)$	$\binom{8}{2}$ or $\binom{8}{3}$ or
	A1: is cao and is for $28k^2x^2$ or for $28(kx)^2$	
	A1: is cao and is for $56k^3x^3$ or for $56(kx)^3$ Any extra terms in higher powers of x should be ignored.	
	Allow terms separated by commas or given as a list for all the marks.	
(b)	M1: Sets their coefficient of $x^3 = 1512$ and obtains $k^n =$ where n is 1 or 3	
	A1: $k^3 = \frac{1512}{56}$ or equivalent e.g. 27 (May be implied by their final answer)	
	A1: $k = 3$ cao (± 3 is A0)	
	Note (b) can be marked independently of part (a) so part (a) might be incorrect or not	attempted but
<u> </u>	they have $56k^3 = 1512$ etc. in (b)	

Question Number	Scheme	Marks
	$7\sin x = 3\cos x$	
8(a)	$(\tan x =)\frac{3}{7}$	B1
		[1]
(b)	$\tan\left(2\theta+30\right)=\frac{3}{7}$	B1ft
	\tan^{-1} " $\frac{3}{7}$ " (α)	M1
	One of θ = awrt 87 or awrt 177 or awrt 267 or awrt 357	A1
	Follow through any of their final θ 's for $\theta \pm 90n$ within range	A1ft
	All of $\theta = 86.6$, 176.6, 266.6, 356.6	A1
		[5]
		6 marks
	Notes	
(a)	B1: ($\tan x = \frac{3}{7}$ or exact equivalent so accept recurring decimal (0.428571) but not rour	nded answer
(b)	B1ft: Correct equation as shown or follow through their value for tan x from part (a). Must be	be
. ,	$\tan(2\theta+30) = \dots$ but $2\theta+30$ may be implied later by an attempt to subtract 30 and then	divide by 2.
	If the processing is unclear or incorrect and $2\theta + 30$ is never seen, score B0 here.	
	M1: Finds arctan of their $\frac{3}{7}$. Could be implied by their value e.g. 23.19 or just $\tan^{-1} \frac{3}{7}$.	
	A1: For one of either θ = awrt 87 or awrt 177 or awrt 267 or awrt 357	
	A1ft: Follow through any of their final answers to which an integer multiple of 90 has been	added or
	subtracted to give another solution in range but not for adding a multiple of 90 to just α .	
	A1: For all 4 correct answers to the required accuracy as stated in the scheme. Ignore e	extra answers
	outside range but lose last A mark for extra answers inside range.	

Question Number	Scheme	Marks
9.(a)	$130000 \times (1.02) = 132600 * \text{ or } 2\% = 2600 \text{ and } 130000 + 2600 = 132600 *$	B1
(b)		[1]
(b)	(r=) 1.02	B1
()		[1]
(c)	Uses $130000 \times (1.02)^{N-1} > 260000$ or $130000 \times (1.02)^{N-1} = 260000$	M1
	So $(1.02)^{N-1} > 2$	A1
	$(N-1)\log_{10}(1.02) > \log_{10} 2$ or $(N-1)\log_{10}(1.02) = \log_{10} 2$ or $(N-1) > \log_{1.02} 2$ or $(N-1) = \log_{1.02} 2$	M1
	$N > \frac{\log_{10} 2}{\log_{10} (1.02)} + 1*$	Alcso
(4)		[4]
(d)	(N=) 37	B1
		[1]
	Notes	7 marks
(a)	B1: A reason must be provided for this mark as the answer is printed.	
	Allow both $130000 \times (1 + 2\%)$ and $130000 \times (102\%)$ as both give the correct answer when en	tered this
<i>a</i> >	way on a calculator. But not 130000×1+2%	
(b)	B1: For 1.02 oe e.g. allow $\frac{51}{50}$	
(c)	M1: Correct inequality or equality – may use r or their r or 1.02 and may use N or n . A1: $(1.02)^{N-1} > 2$ cao. Allow $(1.02)^{n-1} > 2$	
	M1: Correct use of logs power rule on their previous line which must have come from using th of a GP. Condone missing brackets for this mark e.g. $N-1\log_{10}(1.02)>\log_{10}2$. (May follow instead of > or use of r instead of 1.02 or use of N instead of $N-1$). These cases can get M0A0	use of =
	the base to be absent or just 'ln' for this mark. If the inequality sign is reversed at this point, sti M1.	
	A1*: Answer is exactly as printed (including the bases) and all inequality work should be corprevious marks scored and no missing brackets earlier . Allow this mark to score from a correline provided the power rule is used. So fully correct work leading to	
	$(N-1)\log_{10}(1.02) > \log_{10}2 \Rightarrow N > \frac{\log_{10}2}{\log_{10}(1.02)} + 1$ scores the final M1A1 but	
	$(1.02)^{N-1} > 2 \Rightarrow N > \frac{\log_{10} 2}{\log_{10} (1.02)} + 1$ scores M0A0 (no explicit use of power rule)	
(d)	B1: Only need $N = 37$ – may follow trial and error or uses logs to a different base. Do not allow $N \ge 37$ or $N > 37$ or $N = 37.0$	

Question Number	Scheme	Marks
	$y = 12x^{\frac{5}{4}} - \frac{5}{18}x^2 - 1000$	
10.(a)	$y = 12x^{\frac{5}{4}} - \frac{5}{18}x^2 - 1000$ $\frac{dy}{dx} = 12 \times \frac{5}{4}x^{\frac{1}{4}} - \frac{10}{18}x$	M1 A1
		[2]
(b)	Put $12 \times \frac{5}{4} x^{\frac{1}{4}} - \frac{10}{18} x = 0$ so $x^n = k \ (n \in \square, k \neq 0)$	M1
	$\therefore x = \left(\begin{array}{c}\right)^{\frac{4}{3}} \\ \therefore x = 81 \end{array}$	dM1
	$\therefore x = 81$ (Ignore $x = 0$ if given as a second solution)	A1
	So $y = 12(81)^{\frac{5}{4}} - \frac{5}{18}(81)^2 - 1000$ i.e. $y = 93.5$	dM1A1
	18 (6-1) 18 (6-1)	[5]
(c)	$\frac{d^2 y}{dx^2} = \frac{15}{4} x^{-\frac{3}{4}} - \frac{5}{9}$	B1ft
	Substitutes their non-zero x (positive or negative) into their second derivative.	M1
	Obtains maximum after correctly substituting 81 into correct second derivative to give correct	
	negative quantity $-\frac{15}{36}$ o.e. or decimal e.g0.4 (see note below) and considers negative	
	sign deducing maximum.	A1
	Note that a correct second derivative followed by $x = 81 \Rightarrow \frac{d^2y}{dx^2} = \frac{15}{4}81^{-\frac{3}{4}} - \frac{5}{9} = -\frac{5}{12}$ therefore	
	maximum scores B1M1A0 here.	
		[3]
!		[-]
	Notes	10 marks
(a)	Notes Notes	
(a)	M1: Attempt to differentiate – power reduced by one $x^n \to x^{n-1}$ (but not just $1000 \to 0$)	
(a) (b)		10 marks
	M1: Attempt to differentiate – power reduced by one $x^n \to x^{n-1}$ (but not just $1000 \to 0$) A1: Two correct terms and no extra terms. Terms may be un-simplified.	is real and
	M1: Attempt to differentiate – power reduced by one $x^n \to x^{n-1}$ (but not just $1000 \to 0$) A1: Two correct terms and no extra terms. Terms may be un-simplified. M1: Puts derivative = 0 and attempts to solve to obtain an equation of the form $x^n = k$ where $n \neq k$ is non-zero dM1: Correct processing to obtain a value for x . (Dependent on the first method mark). This may only be awarded for processing an equation of the form $ax^{\frac{1}{4}} - bx = 0$ i.e. their derivative must	is real and
	M1: Attempt to differentiate – power reduced by one $x^n \to x^{n-1}$ (but not just $1000 \to 0$) A1: Two correct terms and no extra terms. Terms may be un-simplified. M1: Puts derivative = 0 and attempts to solve to obtain an equation of the form $x^n = k$ where $n \neq k$ is non-zero dM1: Correct processing to obtain a value for x . (Dependent on the first method mark). This may	is real and ark can have the
	M1: Attempt to differentiate – power reduced by one $x^n \to x^{n-1}$ (but not just $1000 \to 0$) A1: Two correct terms and no extra terms. Terms may be un-simplified. M1: Puts derivative = 0 and attempts to solve to obtain an equation of the form $x^n = k$ where n k is non-zero dM1: Correct processing to obtain a value for x . (Dependent on the first method mark). This may only be awarded for processing an equation of the form $ax^{\frac{1}{4}} - bx = 0$ i.e. their derivative must correct powers of x . E.g. $ax^{\frac{1}{4}} - bx = 0 \Rightarrow x^{\frac{1}{4}} \left(a - bx^{\frac{3}{4}}\right) \Rightarrow x = k^{\frac{4}{3}}$ or $ax^{\frac{1}{4}} - bx = 0 \Rightarrow ax^{\frac{1}{4}} = bx \Rightarrow px = qx^4 \Rightarrow 0$. Do not allow incorrect squaring e.g. $ax^{\frac{1}{4}} - bx = 0 \Rightarrow px - qx^4 = 0$ etc.	is real and ark can have the
	M1: Attempt to differentiate – power reduced by one $x^n \to x^{n-1}$ (but not just $1000 \to 0$) A1: Two correct terms and no extra terms. Terms may be un-simplified. M1: Puts derivative = 0 and attempts to solve to obtain an equation of the form $x^n = k$ where n k is non-zero dM1: Correct processing to obtain a value for x . (Dependent on the first method mark). This may only be awarded for processing an equation of the form $ax^{\frac{1}{4}} - bx = 0$ i.e. their derivative must correct powers of x . E.g. $ax^{\frac{1}{4}} - bx = 0 \Rightarrow x^{\frac{1}{4}} \left(a - bx^{\frac{3}{4}}\right) \Rightarrow x = k^{\frac{4}{3}}$ or $ax^{\frac{1}{4}} - bx = 0 \Rightarrow ax^{\frac{1}{4}} = bx \Rightarrow px = qx^4 \Rightarrow 0$. Do not allow incorrect squaring e.g. $ax^{\frac{1}{4}} - bx = 0 \Rightarrow px - qx^4 = 0$ etc. A1: cao	is real and ark can have the $x = \sqrt[3]{k}$
	M1: Attempt to differentiate – power reduced by one $x^n \to x^{n-1}$ (but not just $1000 \to 0$) A1: Two correct terms and no extra terms. Terms may be un-simplified. M1: Puts derivative = 0 and attempts to solve to obtain an equation of the form $x^n = k$ where n k is non-zero dM1: Correct processing to obtain a value for x . (Dependent on the first method mark). This may only be awarded for processing an equation of the form $ax^{\frac{1}{4}} - bx = 0$ i.e. their derivative must correct powers of x . E.g. $ax^{\frac{1}{4}} - bx = 0 \Rightarrow x^{\frac{1}{4}} \left(a - bx^{\frac{3}{4}}\right) \Rightarrow x = k^{\frac{4}{3}}$ or $ax^{\frac{1}{4}} - bx = 0 \Rightarrow ax^{\frac{1}{4}} = bx \Rightarrow px = qx^4 \Rightarrow 0$ Do not allow incorrect squaring e.g. $ax^{\frac{1}{4}} - bx = 0 \Rightarrow px - qx^4 = 0$ etc. A1: cao dM1: Substitutes their positive value for x into $y = \dots$ and not into $\frac{dy}{dx} = \dots$ (Dependent on the	is real and ark can have the $x = \sqrt[3]{k}$
	M1: Attempt to differentiate – power reduced by one $x^n \to x^{n-1}$ (but not just $1000 \to 0$) A1: Two correct terms and no extra terms. Terms may be un-simplified. M1: Puts derivative = 0 and attempts to solve to obtain an equation of the form $x^n = k$ where n k is non-zero dM1: Correct processing to obtain a value for x . (Dependent on the first method mark). This may only be awarded for processing an equation of the form $ax^{\frac{1}{4}} - bx = 0$ i.e. their derivative must correct powers of x . E.g. $ax^{\frac{1}{4}} - bx = 0 \Rightarrow x^{\frac{1}{4}} \left(a - bx^{\frac{3}{4}}\right) \Rightarrow x = k^{\frac{4}{3}}$ or $ax^{\frac{1}{4}} - bx = 0 \Rightarrow ax^{\frac{1}{4}} = bx \Rightarrow px = qx^4 \Rightarrow 0$. Do not allow incorrect squaring e.g. $ax^{\frac{1}{4}} - bx = 0 \Rightarrow px - qx^4 = 0$ etc. A1: cao	is real and ark can have the $x = \sqrt[3]{k}$
(b)	M1: Attempt to differentiate – power reduced by one $x^n \to x^{n-1}$ (but not just $1000 \to 0$) A1: Two correct terms and no extra terms. Terms may be un-simplified. M1: Puts derivative = 0 and attempts to solve to obtain an equation of the form $x^n = k$ where n k is non-zero dM1: Correct processing to obtain a value for x . (Dependent on the first method mark). This may only be awarded for processing an equation of the form $ax^{\frac{1}{4}} - bx = 0$ i.e. their derivative must correct powers of x . E.g. $ax^{\frac{1}{4}} - bx = 0 \Rightarrow x^{\frac{1}{4}} \left(a - bx^{\frac{3}{4}}\right) \Rightarrow x = k^{\frac{4}{3}}$ or $ax^{\frac{1}{4}} - bx = 0 \Rightarrow ax^{\frac{1}{4}} = bx \Rightarrow px = qx^4 \Rightarrow 0$. Do not allow incorrect squaring e.g. $ax^{\frac{1}{4}} - bx = 0 \Rightarrow px - qx^4 = 0$ etc. A1: cao dM1: Substitutes their positive value for x into $y = \dots$ and not into $\frac{dy}{dx} = \dots$ (Dependent on the method mark) A1: cao If $x = 81$ appears from no working following a correct derivative score M1M0A0 then allow for	is real and ark can have the $x = \sqrt[3]{k}$
	M1: Attempt to differentiate – power reduced by one $x^n \to x^{n-1}$ (but not just $1000 \to 0$) A1: Two correct terms and no extra terms. Terms may be un-simplified. M1: Puts derivative = 0 and attempts to solve to obtain an equation of the form $x^n = k$ where n k is non-zero dM1: Correct processing to obtain a value for x . (Dependent on the first method mark). This may only be awarded for processing an equation of the form $ax^{\frac{1}{4}} - bx = 0$ i.e. their derivative must correct powers of x . E.g. $ax^{\frac{1}{4}} - bx = 0 \Rightarrow x^{\frac{1}{4}} \left(a - bx^{\frac{3}{4}}\right) \Rightarrow x = k^{\frac{4}{3}}$ or $ax^{\frac{1}{4}} - bx = 0 \Rightarrow ax^{\frac{1}{4}} = bx \Rightarrow px = qx^4 \Rightarrow 0$. Do not allow incorrect squaring e.g. $ax^{\frac{1}{4}} - bx = 0 \Rightarrow px - qx^4 = 0$ etc. A1: cao dM1: Substitutes their positive value for x into $y = \dots$ and not into $\frac{dy}{dx} = \dots$ (Dependent on the method mark) A1: cao	is real and ark can have the $x = \sqrt[3]{k}$
(b)	M1: Attempt to differentiate – power reduced by one $x^n \to x^{n-1}$ (but not just $1000 \to 0$) A1: Two correct terms and no extra terms. Terms may be un-simplified. M1: Puts derivative = 0 and attempts to solve to obtain an equation of the form $x^n = k$ where n k is non-zero dM1: Correct processing to obtain a value for x . (Dependent on the first method mark). This may only be awarded for processing an equation of the form $ax^{\frac{1}{4}} - bx = 0$ i.e. their derivative must correct powers of x . E.g. $ax^{\frac{1}{4}} - bx = 0 \Rightarrow x^{\frac{1}{4}} \left(a - bx^{\frac{3}{4}}\right) \Rightarrow x = k^{\frac{4}{3}}$ or $ax^{\frac{1}{4}} - bx = 0 \Rightarrow ax^{\frac{1}{4}} = bx \Rightarrow px = qx^4 \Rightarrow 2x = 2x$	is real and ark can have the $x = \sqrt[3]{k}$ e first
(b)	M1: Attempt to differentiate – power reduced by one $x^n \to x^{n-1}$ (but not just $1000 \to 0$) A1: Two correct terms and no extra terms. Terms may be un-simplified. M1: Puts derivative = 0 and attempts to solve to obtain an equation of the form $x^n = k$ where $n \neq k$ is non-zero dM1: Correct processing to obtain a value for x . (Dependent on the first method mark). This may only be awarded for processing an equation of the form $ax^{\frac{1}{4}} - bx = 0$ i.e. their derivative must correct powers of x . E.g. $ax^{\frac{1}{4}} - bx = 0 \Rightarrow x^{\frac{1}{4}} \left(a - bx^{\frac{3}{4}}\right) \Rightarrow x = k^{\frac{4}{3}}$ or $ax^{\frac{1}{4}} - bx = 0 \Rightarrow ax^{\frac{1}{4}} = bx \Rightarrow px = qx^4 \Rightarrow 2x = 2x$	is real and ark can have the $x = \sqrt[3]{k}$ e first

Question Number	Scheme	Marks
11(a)	$16^2 = 10^2 + 12^2 - 2 \times 10 \times 12\cos \angle YXZ$	M1
	$\cos \angle YXZ = \frac{10^2 + 12^2 - 16^2}{2 \times 10 \times 12} \text{ or } \frac{-12}{240} \text{ or } -0.05$	A1
	$\angle BOC = 1.62(08)$ (N.B. 92.87 degrees is A0)	A1
<i>a</i> >		[3]
(b)	Uses $s = 5\theta$ with their θ from part (a)	M1
	awrt 8.1	A1
	Perimeter = $r\theta + 28$, = 28 + their arc length	M1
	awrt 36.1	A1
		[4]
(c)	area of sector = $\frac{1}{2}(5)^2 \theta$	B1ft
	area of triangle = $\frac{1}{2}10 \times 12 \sin \theta$ (= 59.92 or 59.93)	B1ft
	Area of shaded region = $\frac{1}{2} \times 10 \times 12 \sin \theta - \frac{1}{2} (5)^2 \theta = 59.9 20.2$ = 39.7 (cm ²)	M1 A1
		[4]
		(11 marks)
	Notes	marks)
(a)	M1: Uses cosine rule – must be a correct statement A1: Correct value or correct numerical expression for cos ∠YXZ A1: accept awrt 1.62 and must be seen in part (a) (answer in degrees is A0 (92.865))	
(b)	M1: Uses $s = 5\theta$ with their θ in radians, or correct formula for degrees if working in degrees	
	A1: Accept awrt 8.1 (may be implied by their perimeter) M1: Adds their arc length to 28 or (16 + 7 + 5)	
	A1: Accept awrt 36.1 do not need units (ignore any given)	
(c)	B1ft: This formula used with their θ in radians or correct formula for degrees	
	B1ft: Correct formula for area used – may use half base times height (may be implied by a co	rrect answer
	(59.9))	
	M1: Subtracts their sector area from their triangle area this way round. A1: awrt 39.7 – do not need units (ignore any given)	
	Alternative approach to finding angle YXZ and area of triangle:	
	Let foot of perpendicular from X to YZ be W and $XW = h$ and $YW = x$ so $WZ = 16 - x$:	
	$h^2 + x^2 = 100$, $h^2 + (16 - x)^2 = 144 \Rightarrow x = \frac{53}{8}$, $h = \frac{3\sqrt{399}}{8}$ M1: Correct work leading to values of	of x and h
	$\angle YXZ = \sin^{-1}\left(\frac{53}{80}\right) + \sin^{-1}\left(\frac{25}{32}\right) = 1.62$ A1:Correct expression for $\angle YXZ$, A1: awrt 1.62	
	The B1 for the triangle area in (c) can then score for $\frac{1}{2} \times 16 \times "\frac{3\sqrt{399}}{8}"$. Note this is $3\sqrt{399}$	

Scheme	Marks
(a) and (b) can be marked together	
$f(x) = \frac{16 + 24\sqrt{x} + 9x}{x}$	M1
$f(x) = 16x^{-1} + 24x^{-\frac{1}{2}} + 9$	M1A1A1
$f'(x) = -16x^{-2} - 12x^{-\frac{3}{2}}$	[4] M1 A1
	[2]
When $x = 4$, $y = 25$	B1
$f'(4) = -1 - \frac{12}{8} = -2\frac{1}{2}$	M1
Equation of tangent is $y-25 = -\frac{5}{2}(x-4)$	M1 A1
	[4]
	10 marks
Notes	
M1: Evidence of differentiation $x^n \to x^{n-1}$ of an expression of the form Ax^{-1} or Bx^k so $x^{-1} \to x^{-2}$ or $x^k \to x^{k-1}$ ($k \ne 1$) and not just $C \to 0$. Differentiating top and bottom separately is M0. Note this is a hence and so attempts at e.g. use of the quotient rule scores M0. A1: cao and cso (May be un-simplified) Note: An incorrect constant in part (a) (e.g. 3 instead of 9) will fortuitously give the same derivative	
 B1: 25 only M1: Substitute x = 4 into their derived function M1: Uses their "25" and their "gradient" which has come from calculus (not the norm. 	ý
	(a) and (b) can be marked together $f(x) = \frac{16 + 24\sqrt{x} + 9x}{x}$ $f(x) = 16x^{-1} + 24x^{-\frac{1}{2}} + 9$ $f'(x) = -16x^{-2} - 12x^{-\frac{1}{2}}$ $When x = 4, y = 25 f'(4) = -1 - \frac{12}{8} = -2\frac{1}{2} Equation of tangent is y - 25 = -\frac{5}{2}(x - 4) \frac{16}{x} M1: expands numerator into a three (or four) term quadratic in \sqrt{x} (allow (\sqrt{x})^2 for x = 1) and the set of differentiation x = 1 of an expression of the form x = 1 or x = 1 or x = 1. All terms correct M1: Evidence of differentiation x = 1 of an expression of the form x = 1 or x = 1 on this is a hence and so attempts at e.g. use of the quotient rule scores M0. Al: can and cso (May be un-simplified) Note: An incorrect constant in part (a) (e.g. 3 instead of 9) will fortuitously give the scores M1A0 if otherwise correct. B1: 25 only M1: Substitute x = 1 into their derived function M1: Uses their "25" and their "gradient" which has come from calculus (not the norm x = 1 to give correct flequation of line. If using y = mx + c must at least obtain a value A1: any correct form e.g. y = -\frac{5}{2}x + 35, \qquad 5x + 2y - 70 = 0$

Question Number	Scheme	Marks
13(a)	$3kx^2 + (8k+6)x + 9k - 2 = 0$ or $3kx^2 + 8kx + 6x + 9k - 2 = 0$	B1
	Uses $b^2 - 4ac$ with $a = 3k$, $b = 8k \pm 6$ and $c = 9k \pm 2$	M1
	$-44k^2 + 120k + 36 < 0$ or $36 < 44k^2 - 120k$ o.e.	A1
	Reached with no errors	
	$11k^2 - 30k - 9 > 0 *$	A1*
(b)	Attempts to solve $11k^2 - 30k - 9 = 0$ to give $k =$	[4] M1
	$\Rightarrow \text{Critical values}, \ k = 3, -\frac{3}{11}$	A1
	$k > 3 \text{ (or) } k < -\frac{3}{11}$	M1 A1cao
		[4]
	Notes	8 marks
(a)	B1: Multiplies by k and collects terms to one side in any order. Allow the x terms not to be completed the '= 0' may be implied by use of a correct discriminant. M1: Attempts $b^2 - 4ac$ with $a = 3k$, $b = 8k \pm 6$ and $c = 9k \pm 2$ or uses quadratic formula with seen to solve their equation or uses $b^2 = 4ac$ or e.g. $b^2 < 4ac$. There must be no x 's. A1: Obtains a correct three term quadratic inequality that is not the printed answer with a A1: Correct answer with no errors	th $b^2 - 4ac$
(b)	M1: Uses factorisation, formula, or completion of square method to find two values for k or correct answers with no obvious method for the given three term quadratic A1: Obtains $k = 3$, $-\frac{3}{11}$ accept awrt - 0.272 M1: Chooses outside region (k < Their Lower Limit k > Their Upper Limit) for a 3 term inequality. Do not award simply for diagram or table.	
	A1: $k > 3$ (or) $k < -\frac{3}{11}$ must be exact here but allow $-0.\dot{2}\dot{7}$ for $-\frac{3}{11}$. Allow other notation such as $\left(-\infty, -\frac{3}{11}\right) \cup \left(3, \infty\right)$ $k > 3$ and $k < -\frac{3}{11}$ and $-\frac{3}{11} > k > 3$ score M1A0 ISW if possible e.g. $k > 3$, $k < -\frac{3}{11}$ followed by $-\frac{3}{11} > k > 3$ can score M1A1	
	$k > 3$, $k > -\frac{3}{11}$ followed by $k > 3$ (or) $k < -\frac{3}{11}$ can score M1A1 Allow (b) to be solved in terms of x for the first 3 marks but the final A mark needs the region	$\frac{1}{2}$ in terms of k .
	Fully correct answer with no working scores full marks. Answers that are otherwise correct but use \leq , \geq lose final mark.	

Question Number	Scheme	Marks
14(i)	$\log_a x + \log_a 3 = \log_a 27 - 1$ so $\log_a \frac{3x}{27} = -1$	
	Or $\log_a x + \log_a 3 = \log_a 27 - \log_a a$ so $\log_a 3x = \log_a \frac{27}{a}$	M1 A1
	Or $\log_a x + 1 = \log_a 27 - \log_a 3 = \log_a 9$ so $\log_a ax = \log_a 9$	
	$\frac{3x}{27} = a^{-1}$ $x = 9a^{-1} \text{ or } \frac{9}{-}$	M1
	$x = 9a^{-1} \text{ or } \frac{9}{a}$	A1
(::)		[4]
(ii)	$x^2 - 7x + 12 = 0$ and attempt to solve to give $x =$ or $\log_5 y =$ (implied by correct answers)	M1
	$x mtext{ (or } \log_5 y) = 3 mtext{ and } 4$	A1
	$y = 5^3$ or 5^4	dM1
	y = 125 and 625	A1
	·	[4]
		8 marks
(i)	Notes M1: Uses sum or difference of logs correctly e.g.	
W	$\log x + \log 3 = \log 3x$ or $\log 27 - \log 3 = \log 9$ or $\log 27 - \log x = \log \frac{27}{x}$ etc.	
	or writes 1 as $\log_a a$	
	A1: Uses two rules correctly to obtain correct log equation M1: Removes logs correctly to obtain an equation connecting x and a A1: Correct simplified answer	
	Note that some candidates interpret $\log_a 27 - 1$ as $\log_a (27 - 1)$. This can score a maximum of	l out of 4 if
	they have $\log x + \log 3 = \log 3x$	
	Note that $\log_a x + \log_a 3 = \log_a 27 - 1$ so $\frac{\log_a 3x}{\log_a 27} = -1 \Rightarrow \frac{3x}{27} = a^{-1}$ etc. scores M1A0M0A0	
	Note that $\log_a x + \log_a 3 = \log_a 27 - 1$ so $\frac{\log_a x \log_a 3}{\log_a 27} = -1 \Rightarrow \frac{3x}{27} = a^{-1}$ etc. scores no mar	ks
(ii)	M1: Recognise and attempt to solve quadratic	
	A1: Obtain both 3 and 4 (Both correct implies M1A1)	
	dM1: Uses powers correctly to find a value for y (Dependent on first method mark) A1: Both values correct	

Question Number	Scheme	Marks
15 (a)	Mid-point of $AB = (2, -3)$	M1 A1
	$(r^2) = (12 - "2")^2 + (2 - "-3")^2$ or $(r^2) = (-8 - "2")^2 + (-8 - "-3")^2$ or $(d^2) = (-8 - 12)^2 + (-8 - 2)^2$	M1
	$r^2 = 125$	A1
	"125" = $(x \pm "2")^2 + (y \pm "-3")^2$	M1
	$125 = (x-2)^2 + (y+3)^2$	A1
		[6]
(b)	gradient from "(2, -3)" to (4, 8) = $\frac{8 - "-3"}{4 - "2"}$, $\left(=\frac{11}{2}\right)$	M1
	ZM has gradient $-\frac{1}{m}$ $\left(=-\frac{2}{11}\right)$	M1
	Either: $y - 8 = "-\frac{2}{11}"(x - 4)$ or: $y = "-\frac{2}{11}"x + c$ and $8 = "-\frac{2}{11}"(4) + c \implies c = "8\frac{8}{11}"$	ddM1
	2x + 11y - 96 = 0	A1
		[4]
		(10
	Notes	(10marks)
(a)	M1: Uses midpoint formula, or implied by y coordinate of -3 or x coordinate of 2 A1: cao M1: Finds radius or radius ² , diameter or diameter ² using any valid method – probably distance to one of the points. Need not state $r = \dots$ so ignore lhs – you are just looking for correct us Pythagoras with or without the square root so ignore how they reference it for this mark A1: for any equivalent $r^2 = 125$ or $r = \sqrt{125}$ (11.18) etc. Their numeric answer must be iden either r or r^2 (may be implied by their equation). If they halve it or double it, this is M1 A0. M1: Attempt to use a true equation for circle with their centre and radius or the letter r , allow brackets but do not allow use or r instead of r^2 in the equation. So must be using $r^2 = (x \pm \dots)^2 + (y \pm \dots)^2$	se of tified here as
	A1: correct answer only (Allow $(5\sqrt{5})^2$ instead of 125 but not $5\sqrt{5}^2$)	
(b)	M1: States or uses gradient equation correctly with their centre and (4, 8). Must be using their centre and (4, 8). If no method is shown and gradient incorrect for their values score M0. M1: Finds negative reciprocal. Follow through their gradient ddM1: Correct straight line method with (4, 8) and perpendicular gradient. Dependent on both previous method marks having been scored. A1: cao – accept multiples of this equation (Note integer coefficients not required) A common error here is to use the diameter to find the gradient. This usually scores M0M1ddM0A0 i.e. just one mark for the perpendicular gradient rule. (b) Alternative uses implicit differentiation: e.g.	
	$125 = (x-2)^2 + (y+3)^2 \Rightarrow 2(x-2) + 2(y+3)\frac{dy}{dx} = 0 M1(correct implicit differentiation)$ $\Rightarrow \frac{dy}{dx} = \frac{2-x}{y+3} = \frac{2-4}{8+3} M1(Substitution)$ Then follow the scheme.	i) 0e

Question Number	Scheme	Marks
16(a)	$\frac{1}{2}x + 1 = x^2 - 4x + 3$	M1
	$2x^2 - 9x + 4 = 0 \Rightarrow x = \frac{1}{2} \text{ or } x = 4$	dM1 A1
	y = 5/4 or y = 3	dM1 A1
<i>a</i> .)		[5]
(b)	Curve meets x-axis at $x = 3$ and at $x = 1$ (No need to see $y = 0$)	M1 A1 [2]
	NOTE that the subscripted A's refer to areas on the diagram given at the end of the	[2]
	scheme.	
(c)	All the method marks are for their $x = 1/2$, 4, 1 and 3	
Way 1	$\int x^2 - 4x + 3 \mathrm{d}x = \frac{1}{3}x^3 - 2x^2 + 3x$	M1 A1
	Use limits 1 and $\frac{1}{2} \left[\left(\frac{1}{3}(1)^3 - 2(1)^2 + 3 \times 1 \right) - \left(\frac{1}{3} \left(\frac{1}{2} \right)^3 - 2 \cdot \left(\frac{1}{2} \right)^2 + 3 \times \left(\frac{1}{2} \right) \right] \right] A_1$	M1
	Use limits 4 and 3 $\left[\left(\frac{1}{3} (4)^3 - 2(4)^2 + 3 \times (4) \right) - \left(\frac{1}{3} (3)^3 - 2 \cdot (3)^2 + 3 \times (3) \right) \right] A_2$	M1
	Area of trapezium =	
	$\frac{1}{2}(a+b) \times h = \frac{1}{2}(\frac{5}{4}+3) \times (4-\frac{1}{2}) = \dots \text{ or } \int_{\frac{1}{2}}^{4} (\frac{1}{2}x+1) dx = \left[\frac{1}{4}x^2 + x\right]_{\frac{1}{2}}^{4} = (4+4) - (\frac{1}{16} + \frac{1}{2}) = \dots$	M1
	7.4375 $\left(7\frac{7}{16}\right) \left(\frac{119}{16}\right)$ (may be implied by correct final answer)	A1
	Uses correct combination of correct areas. Area of region = Area of trapezium $-A_1 - A_2$	444M1
	Dependent on all previous method marks	ddddM1
	$= 7.4375 - \frac{7}{24} - \frac{4}{3} = \frac{93}{16} \text{ or } 5.8125$	A1
(c)	Alternative method using "line – curve" and subtracting area below x- axis	[8]
(c) Way 2	Afternative method using line – curve and subtracting area below x- axis $\int -x^2 + \frac{9}{2}x - 2dx = -\frac{x^3}{3} + \frac{9}{4}x^2 - 2x \text{ or } \int x^2 - \frac{9}{2}x + 2dx = \frac{x^3}{3} - \frac{9}{4}x^2 + 2x$	M1A1
	Use limits $\frac{1}{2}$ and 4 on this <i>subtracted</i> integration $\left(A_3 + A_4 + A_5 + A_6\right) = 6\frac{2}{3} + \frac{23}{48} = \dots$	M1
	$\pm \int x^2 - 4x + 3 dx = \pm \left(\frac{1}{3}x^3 - 2x^2 + 3x\right)$	M1
	Use limits 1 and 3 on their integrated curve to obtain $A_6 = \pm \frac{4}{3}$	M1A1
	Uses correct combination of correct areas. Area of region = $(A_3 + A_4 + A_5 + A_6) - A_6$	
	Dependent on all previous method marks	ddddM1
	$6\frac{2}{3} + \frac{23}{48} - \frac{4}{3} = \frac{93}{16}$	A1
()		[8]
(c) Way 3	Alternative method using "line – curve" for areas A_3 and A_4 and adding smaller trapezium	
vvay c	$\int -x^2 + \frac{9}{2}x - 2dx = -\frac{x^3}{3} + \frac{9}{4}x^2 - 2x \text{ or } \int x^2 - \frac{9}{2}x + 2dx = \frac{x^3}{3} - \frac{9}{4}x^2 + 2x$	M1A1
	Use limits 1 and $\frac{1}{2} \left[\left(-\frac{1}{3}(1)^3 + \frac{9}{4}(1)^2 - 2 \times 1 \right) - \left(-\frac{1}{3}(\frac{1}{2})^3 + \frac{9}{4}(\frac{1}{2})^2 - 2 \times \frac{1}{2} \right] A_3$	M1
	Use limits 4 and 3 $\left[\left(-\frac{1}{3}(4)^3 + \frac{9}{4}(4)^2 - 2 \times 4 \right) - \left(-\frac{1}{3}(3)^3 + \frac{9}{4}(3)^2 - 2 \times 3 \right) \right] A_4$	M1
	Area of trapezium =	
	$\frac{1}{2}(a+b) \times h = \frac{1}{2}(\frac{3}{2} + \frac{5}{2}) \times (3-1) = \dots \text{ or } \int_{1}^{3} \left(\frac{1}{2}x+1\right) dx = \left[\frac{1}{4}x^{2} + x\right]_{1}^{3} = \left(\frac{9}{4} + 3\right) - \left(\frac{1}{4} + 1\right) = \dots$	M1
}	= 4	A1
	Uses correct combination of correct areas. Area of region = $A_3 + A_4 + A_5$	ddddM1
	Dependent on all previous method marks	
	$\frac{19}{48} + \frac{17}{12} + 4 = \frac{93}{16}$	A1
		[8]

(c) Way 4	Alternative method: Finds area of larger trapezium and subtracts $A_1 + A_2$ which is found by integrating quadratic between $\frac{1}{2}$ and 4 and adding area below x-axis	
	$\int x^2 - 4x + 3 \mathrm{d}x = \frac{1}{3}x^3 - 2x^2 + 3x$	M1 A1
	Use limits 4 and $\frac{1}{2} \left[\left(\frac{1}{3} (4)^3 - 2(4)^2 + 3 \times 4 \right) - \left(\frac{1}{3} \left(\frac{1}{2} \right)^3 - 2 \cdot \left(\frac{1}{2} \right)^2 + 3 \times \left(\frac{1}{2} \right) \right) \right] A_1 + A_2 - A_6$	M2
	AND Use limits 3 and 1 $\pm \left[\left(\frac{1}{3} (3)^3 - 2(3)^2 + 3 \times 3 \right) - \left(\frac{1}{3} (1)^3 - 2 \cdot (1)^2 + 3 \times (1) \right) \right] \pm A_6$	M2
	Area of trapezium =	
	$\frac{1}{2}(a+b) \times h = \frac{1}{2}(\frac{5}{4}+3) \times (4-\frac{1}{2}) = \dots \text{ or } \int_{\frac{1}{2}} (\frac{1}{2}x+1) dx = \left[\frac{1}{4}x^2 + x\right]_{\frac{1}{2}}^4 = (4+4) - (\frac{1}{16} + \frac{1}{2}) = \dots$	M1
	7.4375 $(7\frac{7}{16})$ (may be implied by correct final answer)	A1
	Uses correct combination of correct areas. Area of region = $7.4375 - (A_1 + A_2 - A_6 + A_6)$	ddddM1
	Dependent on all previous method marks	
	$=7.4375 - \left(\frac{7}{24} + \frac{4}{3}\right) = \frac{93}{16}$	A1
		[8] 15 marks
	Notes	10 111111
(a)	M1: Puts equations equal or finds x in terms of y and substitutes or substitutes for x dM1: Solves three term quadratic in x to obtain $x = \dots$ or in y to obtain $y = \dots$ (Dependent on finds).	rst M)
	A1: Both answers correct dM1: Obtains at least one value for y or x (Dependent on first M) A1: Both correct	
	Note: Allow candidates to obtain $x^2 - \frac{9}{2}x + 2 = 0$ and solve as $(2x - 1)(x - 4) = 0 \Rightarrow x = \frac{1}{2}, 4$	
(1)	The coordinates do not need to be 'paired'	
(b)	M1: Attempts to solve $0 = x^2 - 4x + 3$ according to the usual rules A1: cao	
	Attempts by T&I can score both marks for $x = 1$ and $x = 3$. If one solution is obtained by this, so	
	For (c) do not allow 'mixed' methods. For their strategy, they must be finding the appropriate apply the method for the scheme that gives the most credit for the candidate.	
(c) Way 1	M1: Attempt at integration of the given quadratic expression $(x^n \to x^{n+1})$ at least once	
way 1	A1: Correct integration of the given quadratic expression	
	M1: Finds area of A_1 M1: Finds area of A_2	
	M1: Finds area of appropriate trapezium	
	A1: Correct area of trapezium 7.4375 $(7\frac{7}{16})$ ddddM1: correct final combination	
	A1: any correct form of this exact answer	
(c) Way 2	M1: Attempt at integration of \pm (the given quadratic expression – the given line) $(x^n \to x^{n+1})$ at	,
·	A1: Correct integration as shown in the mark scheme. Allow correct answer even if terms not c simplified. If there are sign errors when subtracting before valid attempt at integration, score M M1: Uses the limits $\frac{1}{2}$ and 4 on their <i>subtracted</i> integration M1: Attempts to integrate curve M1: Uses the limits 1 and 3 on the integrated curve C A1: Obtains $A_6 = \pm \frac{4}{3}$	
	ddddM1: correct final combination	
	A1: any correct form of this exact answer Note: A common error with this method is to use the limits ½ and 4 on their <i>subtracted</i> integrat	ion and then
	stop (this should give an area of $\frac{343}{48}$). This will usually score 3/8 in (c)	

(c) Way 3	M1: Attempt at integration of \pm (the given quadratic expression – the given line) $(x^n \to x^{n+1})$ at least once
ways	A1: Correct integration as shown in the mark scheme. Allow correct answer even if terms not collected nor
	simplified. If there are sign errors when subtracting before valid attempt at integration, score M1A0
	M1: Uses the limits ½ and 1 on their <i>subtracted</i> integration
	M1: Uses the limits 4 and 3 on their <i>subtracted</i> integration
	M1: Finds area of appropriate trapezium
	A1: Correct area of trapezium 4
	ddddM1: correct final combination
	A1: any correct form of this exact answer
(c) Way 4	M1: Attempt at integration of the given quadratic expression $(x^n \to x^{n+1})$ at least once
'''	A1: Correct integration of the given quadratic expression
	M2: Finds area of $A_1 + A_2 - A_6$ by using the limits $\frac{1}{2}$ and 4 and finds area of A_6 by using the limits 1 and 3
	M1: Finds area of appropriate trapezium
	A1: Correct area of trapezium 7.4375 $(7\frac{7}{16})$
	ddddM1: correct final combination
	A1: any correct form of this exact answer

Diagram for Question 16

