

Mark Scheme (Results)

January 2015

Pearson Edexcel International A Level Core Mathematics 12 (WMA01_01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2015 Publications Code IA040484 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 125.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2} + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ... $(ax^{2} + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. <u>Formula</u>

Attempt to use <u>correct</u> formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving $x^2 + bx + c = 0$: $(x \pm \frac{b}{2})^2 \pm q \pm c$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

January 2015 International A Level WMA01/01 Core Mathematics C12 Mark Scheme

Question Number	Scheme	Marks				
1.	(a) x^2	B1				
	(b) $\frac{1}{4}x^4$ or $\frac{1}{2^2}x^4$ or $0.25x^4$	[1] B1, B1 [2] 3 marks				
	Notes	C marks				
(b) B1: Fo B1: for n.b. C Mark	(a) B1 : This answer only (b) B1 : For $\frac{1}{4}x^k$ as final answer, <i>k</i> can even be 0. Also accept $\frac{1}{2^2}$ for B1 but 2^{-2} is not simplified and is B0 B1 : for <i>x</i> to power 4 (independent mark) so kx^4 with <i>k</i> a constant (could even be 1) as final answer n.b. Can score B0B1 or B1B0 or B0B0 or B1B1 Mark the final answer on this question Also note : Candidates who misread question as $\sqrt{2x^3} \div \sqrt{\frac{32}{x^2}}$ should get $\frac{1}{4}x^{\frac{5}{2}}$ This is awarded B1B0					
Special c	Special case: The answer $\left(\frac{1}{\sqrt{2}}x\right)^4$ is awarded B0 B1 as x may be in a bracket with power 4 outside.					

Question Number			Schem	ne		Marks
2.	x	2	5	8	11	
	y y	8.485	2.502	1.524	1.100	
(a)	State <i>h</i> =	= 3, or use of $\frac{1}{2} \times \frac{1}{2}$	3			B1 aef
				For	structure of {	} M1A1
	$\frac{1}{1\times3\times10^{-1}}$	-1.100 + 2(2.502 - (17.637)) = (= 26.4)	$\frac{1555}{1555} = a wrt 2$	6 46		A1
	2 × 3 ×	(20.	1999) unit 2			[4
(1-)						
(b)	Adds 9+ half	of their answer	from (a) see	n (allow use o	f half of 26.4555)	M1 M1
		stimate = $9 + 13.2$			1 hull of 20. (555)	A1
	_					[3
		• • • • • •				7 mark
(b)	Way 2: Begin	s again with traj	bezium rule			
	x	2	5	8	11	M1
	У	5.2425	2.251	1.762	1.550	
	Uses $\frac{1}{2} \times 3 \times \{5\}$	5.2425 + 1.550 + 2(2	2.251+1.762)}			M1
	= 22.23					A1 [3
	Notes					[
M1: rec the secc addition as a slip (An ext	uires the correct ond bracket to be hal values. If the o and the M mark ra repeated term to the completely of answer which rom parate trapezia ma 26.46.	multiplied by 2 and only mistake is a c can be allowed forfeits the M mark correct bracket {. unds to 26.46 after ay be used: B1 for	cture. It needs t d to be the sum copying error of a however). M0 } attempt at trape 1.5, M1 for 1/2	the first bracket to nation of the ren is to omit one v if values used in ezium rule h(a + b) used 2 of	o contain first y value plus naining y values in the tabl alue from 2nd bracket this brackets are x values inste or 3 times (and A1 if it is a es B1 M1 A0 A0 unless th	e with no may be regarded ead of y values
NB: Sej A1 for 2 Special		on has been done c	orrectly (then f	ull marks can be	given).	e final answer
NB: Sep A1 for 2 Special implies (b) Way 1 :	that the calculation	on has been done c	•			
NB: Sep A1 for 2 Special implies (b) Way 1 :	that the calculation	on has been done c	•		given). to their "26.46" or to their	
NB: Sep A1 for 2 Special implies (b) Way 1 : M1: A M1: H	that the calculation	on has been done c angle = 1×9 or	•			

Question Number	Scheme		Marks
3. (a)	y = 9 y = 1 (1, 33) (0, 27) (1, 33) (1,	n	1
	y = 9 $y = 1$ $y =$		
			[3]
	(-1, 11) (0, 9) (0, 9) (0, 9)	B	1
(b)	y = 3 (-1,11), (0,9) and (-2.5,0) seen	B	1
	(-2.5, 0) O x $y = 3 (must be equation)$	B	1 [3]
		6	marks
	Notes		

(a) B1: Correct shape with curve crossing x axis and one label correct from the three listed (i.e. a correct new y value). Condone "slight" imperfections in the curvature of the sketches.B1: All three specified labels given to indicate the three new point positions. Do not need coordinates if

B1: All three specified labels given to indicate the three new point positions. Do not need coordinates if clearly labelled on the axes. Accept 27 and accept 2.5 and even allow (27, 0) and (0, 2.5) on *y* and *x* axes respectively.

B1: Equation of asymptote correct (asymptote on figure takes precedence) Asymptote does not need to be drawn dotted.

(b)**B1**: Correct shape (maximum in 2^{nd} quadrant, intercept on negative *x* - axis and approaches asymptote for large positive *x*) Condone "slight" imperfections in the curvature of the sketches.

B1: All three specified labels given to indicate the three new point positions. Accept 9 and accept -2.5 and even allow (9, 0) and (0, -2.5) on *y* and *x* axes respectively.

B1: Equation of asymptote correct (asymptote on figure takes precedence) Do not award this mark if they merely copy the original graph.

If there is no sketch – the maximum mark in part (a) is B0B1B1 and in part (b) is B0B1B0 so 3/6

Special case: Stretch in *y* direction of scale factor 1/3. If there is a graph of the correct shape with (0,3), (1, 11/3), (2.5,0) and asymptote y = 1 then award B0B0B1

Question					
Number	Scheme	Marks			
4.	(a) $\left(2+\frac{x}{4}\right)^{10} = 2^{10} + {\binom{10}{1}}2^9 \cdot \left(\frac{x}{4}\right) + {\binom{10}{2}}2^8 \cdot \left(\frac{x}{4}\right)^2 + {\binom{10}{3}}2^7 \cdot \left(\frac{x}{4}\right)^3 \dots$	M1			
	$=1024, +1280x + 720x^{2} + 240x^{3}$	B1, A1 A1			
	(b) State or Use $x = 0.1$	[4] B1			
	Estimate = $1024 + 1280 \times 0.1 + 720 \times (0.1)^2 + 240 \times (0.1)^3$	M1			
	= 1159.44 or 1159.440 or 1159 or 1159.4 (after correct working)	A1			
		[3] 7 marks			
	Notes				
	method mark is awarded for an attempt at Binomial to get one or more of the terms in x – need correct	1			
	mial coefficient multiplied by the correct power of x. Ignore bracket errors or errors (or omissions) in power (10)				
	ket errors. Accept any notation for ${}^{10}C_1$, ${}^{10}C_2$ and ${}^{10}C_3$, e.g. $\begin{pmatrix} 10\\1 \end{pmatrix}$, $\begin{pmatrix} 10\\2 \end{pmatrix}$ and $\begin{pmatrix} 10\\3 \end{pmatrix}$ (unsimplified) or				
	Pascal's triangle This mark may be given if no working is shown, but any of the terms including x is corrected by $x = \frac{1}{2}$	rect.			
	be simplified to 1024 (writing just 2^{10} is B0). If miscopied later then isw				
	o and is for two correct from $1280 x$, $720x^2$ and $240x^3$				
	a.o and is for all of $1280 x$, $720x^2$ and $240x^3$ correct (ignore extra terms) if divided by 2 or 4 then is				
	w terms given separately without + signs and with commas. Ignore extra terms. Ignore subsequent work	once correct			
N.B. If the set then full mar	answer is seen in simplified form. N.B. If the series is given in Descending Order the first M mark may be awarded and if the whole expansion is given (all 11 terms) then full marks is possible. (b) B1: States or Uses $x = 0.1$				
M1: Uses	M1: Uses their solution of $\frac{x}{4} = 0.025$ substituted in to their series expansion – If no equation stated could see evidence of use				
	of 0.1 or 0.01 (not 0.025) substituted consistently for example A1: This is cao and must follow M1.				
	or 1159.44533 is A0 (used 2.025^{10}) But correct working followed by an answer 1159 or 1159.4 can be	e awarded A1			

Question Number	Scheme	Marks
5. (a)	$S_n = a$ + $(a+d)$ + $(a+2d)$ + + $(a+(n-1)d)$	M1
	$S_n = (a + (n-1)d) + (a + (n-2)d) + \dots + (a+d) + a$	M1
	$2S_n = (2a + (n-1)d) + (2a + (n-1)d) + \dots + (2a + (n-1)d)$	M1
	$S_n = \frac{n}{2} [2a + (n-1)d]^*$ See notes below for those who use triangle numbers in their	A1* [4]
(b)	proof	["]
(b)	Uses either $\frac{n}{2}(2 \times a + (n-1)7)$ or $\frac{n}{2}(a+497)$ or $7 \times \sum_{i=1}^{n} i$	M1
	i.e $\frac{71}{2}(2 \times 7 + 70 \times 7)$ or $\frac{72}{2}(2 \times 0 + 71 \times 7)$ or $\frac{71}{2}(7 + 497)$ or $7 \times \frac{71}{2}(72)$	A1
	= 17892	A1
		[3] 7 marks
	Notes	

term

M1: The LHS should be 2*S*. The RHS must follow from at least two terms correctly matching in the addition and should include at least two terms which are each **correctly** $\{2a + (n-1)d\}$ or (a + L) **or should** be $n\{2a + (n-1)d\}$ or n(a + L)

A1: Need some indication of at least three terms being added (i.e at least three terms and their pairs listed with terms correctly matching or three additions seen) and also need to achieve final answer with no errors and if *L* was used need to state that L = a + (n - 1)d

NB: Some candidates use a variation of

$$\sum_{r=1}^{n} (a + (r-1)d) = \sum_{r=1}^{n} a + d\sum_{r=1}^{n} (r-1) = na + d\frac{n}{2}(n+1) - dn \text{ or } na + d\frac{(n-1)}{2}(n)$$

And conclude that $S_n = \frac{n}{2} [2a + (n-1)d]$. This gains the full 4 marks M1M1M1A1, but must be completely correct.

(b) M1:Uses correct formula (with their *a* and *n*) with *d* =7 or with last term correct A1: Uses consistent and correct *a* and *n*A1: Correct answer

Question Number	Scheme	Marks
6.	(a) Use or state $2\log_4(2x+3) = \log_4(2x+3)^2$	M1
	Use or state $\log_4 4 = 1$ or $4^1 = 4$	M1
	Use or state $\log_4 x + \log_4 (2x-1) = \log_4 x(2x-1)$ or $\log_4 (2x+3)^2 - \log_4 x = \log_4 \frac{(2x+3)^2}{x}$ etc	M1
	$(2x+3)^2 = 4x(2x-1)$ or equivalent including correct rational equations	A1
	Then $4x^2 + 12x + 9 = 8x^2 - 4x$ and so $4x^2 - 16x - 9 = 0$ *	A1* [5
	(b) $(2x + 1)(2x - 9) = 0$ so $x =$ (or use other method e.g formula or completion of square) $x = (-\frac{1}{2} \text{ or }) \frac{9}{2}$	M1 A1 [2
		7 marks
	Notes	
$\log_4(2x+3)$	$\int_{4}^{4} x + \log_{4}(2x-1) = \log_{4} x(2x-1) \text{ or } \log_{4}(2x+3)^{2} - \log_{4} x = \log_{4} \frac{(2x+3)^{2}}{x} \text{ or}$ $\int_{4}^{2} -\log_{4} x - \log_{4}(2x-1) = \log_{4} \frac{(2x+3)^{2}}{x(2x-1)} \text{ or even } \log_{4} x + \log_{4} 4 = \log_{4} 4x \text{ or}$ $\int_{4}^{2} \log_{4} 4x + \log_{4}$	
	$ + \log_4 4 = \log_4 4(2x-1) \text{ or } \log_4 (2x-1) + \log_4 4 + \log_4 x = \log_4 4x(2x-1) \text{ etc} $ rect equation (unsimplified) after correct work. e.g. $\frac{(2x+3)^2}{x(2x-1)} = 4$	
	ains printed answer correctly (This is a given answer so needs previous A mark to have been deneeds correct expansion)	en
$\log_4(2x +$	$+3)^{2} = 1 + \log_{4} x(2x-1) so \frac{\log_{4} (2x+3)^{2}}{\log_{4} x(2x-1)} = 1 so \frac{4x^{2} + 12x + 9}{2x^{2} - x} = 4$	
This can (b) Some c here. Mark	have M1, M1, M1, A0, A0 so 3/5 losing accuracy because of the error in the second step, andidates who did not achieve marks in part (a) begin the log work again and make more p the better work. So credit for (a) may be given in (b). Credit for (b) should not be given in	orogress

M1: Uses solution of their quadratic or of printed quadratic (see notes). This must be in part (b) A1: x = 4.5 and discards x = -0.5 (any equivalent form) Giving $x = -\frac{1}{2}$, $\frac{9}{2}$ is A0 This must be in part (b)

Question number	Scheme	Marks
7 (a)	Obtain $(x \pm 5)^2$ and $(y \pm 3)^2$	M1
	Centre is (-5, 3).	A1 [2]
(b)	See $(x \pm 5)^2 + (y \pm 3)^2 = 16(=r^2)$ or $(r^2 =)$ "25"+"9"-18	M1
	<i>r</i> = 4	A1 [2]
(c)	Use $x = -3$ in either form of equation of circle to obtain simplified quadratic in y	M1
	e.g $x = -3 \Rightarrow (-3+5)^2 + (y-3)^2 = 16 \Rightarrow (y-3)^2 = 12$	
	$or \ (-3)^2 + y^2 + 10 \times (-3) - 6y + 18 = 0 \Longrightarrow y^2 - 6y - 3 = 0$	
	solve resulting quadratic to give <i>y</i> =	M1
	$y = 3 \pm 2\sqrt{3}$	A1, A1 [4]
		8 marks
Alternatives (a)	<i>Method 2:</i> From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$ Centre is $(-g, -f)$, and so centre is $(-5, 3)$.	M1 A1
OR	<i>Method 3:</i> Use any value of y to give two points (L and M) on circle. x co- ordinate of mid point of LM is "-5" and Use any value of x to give two points (P and Q) on circle. y co-ordinate of mid point of PQ is "3" (Centre – chord theorem). (-5, 3) is M1A1	M1 A1 (2)
(b)	Method 2: Using $\sqrt{g^2 + f^2 - c}$ or $(r^2 =)$ "25"+"9"-18 $r = 4$	M1 A1 (2)
(c)		
	<i>Method 2</i> : Divide triangle PTQ and use Pythagoras with $r^2 - (-3 - "-5")^2 = h^2$, then evaluate $"3 \pm h"$ - then get $3 \pm 2\sqrt{3}$	M1 M1 A1 A1 (4)
	Notes	

Mark (a) and (b) together

(a) M1 as in scheme and can be <u>implied</u> by $(\pm 5, \pm 3)$ A1: for correct centre and (-5, 3) (without working) implies M1A1

(b) M1 for a complete and correct method leading to $r^2 = "25" + "9" - 18$ or $r = \sqrt{"25" + "9" - 18}$

or for using equation of circle in $(x \pm 5)^2 + (y \pm 3)^2 = k^2$ form to identify r=k

N.B. $r^2 = k$ or $r = k^2$ is M0 Also - "25" - "9" - 18 is M0 and $r^2 = "25" + "9"$ (without the 18) is M0

A1 r = 4 (only and not with r = -4) Again correct answer with no working implies M1A1 Special case: if centre is given as (5, -3) or (5, 3) or (-5, -3) allow M1A1 for r = 4 worked correctly as

 $(r^2 =)$ "25"+"9"-18 i.e if they obtain r = 4 after sign error give final A1 (So M1A0M1A1)

(c) M1 For substituting x = -3 into an equation for the circle and attempt to simplify to 3 term quadratic or to $(y-a)^2 = b$

M1 For attempting to solve their quadratic (following usual rules – see notes)

A1, A1 Answers must be given as surds – A1 for each correct answer. To earn both A marks, answers must be simplified.

Question Number	Scheme	Marks
8.	21 12 2() 12	241
(a)	$u_2 = 3k - 12, \ u_3 = 3(u_2) - 12$	M1
	$u_2 = 3k - 12, \ u_3 = 9k - 48$	A1
	$u_4 = 3(9k - 48) - 12 = 27k - 156$ (ft their u_3).	M1 A1ft
(b)	27k - 156 = 15 so $k =$	[4 M1
	$k = 6\frac{1}{3}$ or $\frac{19}{3}$ or 6.33 (3sf)	A1 [2
(c)	$\sum_{i=1}^{4} u_i = 6\frac{1}{3} + 7 + 9 + 15 \text{or} \qquad \sum_{i=1}^{4} u_i = k + 3k - 12 + 9k - 48 + 27k - 156$	M1
	$=40k-216$, $=37\frac{1}{3}$ or $\frac{112}{3}$	A1ft, A1cad
		[3 9 marks
	Notes	
(a) M1: A	ttempt to use formula twice to find u_2 and u_3	
A1 : two	o correct simplified answers	
	tempt again to find u_4	
	th term correct and simplified - follow through their u_3	
	It their 4 th term (not 5 th) equal to 15 and attempt to find $k =$	
	ept any correct fraction or decimal answer (allow 6.33 or better here)	1
using term	ses 1 st term and their following 3 terms with plus signs (either numerical or in terms of s from iteration and not formula for an AP or GP. May make a copying slip. or $40k - 216$ or follow through on their k so check $40k - 216$ for their k	<i>k</i>). Must be
	ains $37\frac{1}{3}$ (must be exact) if exact answer given, then isw	
	b use 6.3 will obtain 36 They should have M1A1ftA0 – should have used exact k to give	e exact answer
here.		
	b use 6.33 will obtain 37.2 This should have M1A1ftA0 – should have used exact k to g	ive exact
answer her Those who answer her	o use 6.333 will obtain 37.32 This should have $M1A1ftA0$ – should have used exact k to	give exact
6.3333 wil 6.33333 w	l obtain 37.332 This should have M1A1ftA0 – should have used exact k to give exact a ill obtain 37.3332 etc All these answers should have M1A1ftA0 – should have used exa	
	ver here. Etc se: Those who use $k = 6$ will obtain $6 + 6 + 6 + 6 = 24$ This is M1 A0 A0 in part (c) – a	s over

Question Number	Scheme	Mai	∵ks
9. (a)	$5^2 = 10^2 + 12^2 - 2 \times 10 \times 12 \cos \angle XAB$, or $\cos \angle XAB = \frac{10^2 + 12^2 - 5^2}{2 \times 10 \times 12}$ or $\frac{219}{240}$ or 0.9125 or $\frac{73}{80}$	M1	
	$\angle XAB = 0.421 \text{ or } 0.134\pi$	A1	[0]
(b)	Area of sector is $\frac{1}{2}r^2\theta = \frac{1}{2} \times 10^2 \times \theta$	M 1	[2]
	Area of major sector is $\frac{1}{2} \times r^2 (2\pi - 2 \times "0.421")$ or $\pi \times r^2 - \frac{1}{2} \times r^2 \times 2 \times "0.421")$	M1	
	= 272	A1	
			[3]
(c)	area of triangle $AXB = \frac{1}{2}10 \times 12 \times \sin XAB$ Way 2: Find angle XBA and hence area XBY	M1	
	area of kite = $2 \times$ triangle <i>AXB</i> Area of kite = area of <i>XBY</i> + Area <i>XAY</i>	dM1	
	= awrt 49 = 37.298 + 11.76 = 49	A1	507
	Way 3: Finds length <i>XY</i> by cosine rule or elementary trigonometry (8.173) Uses area of kite = $\frac{1}{2}$ "8.173"×12	M1	[3]
	= awrt 49	dM1 A1	
		AI	[3]
		8 m	
	Notes		
(a) M1 : Use	s cosine rule – must be a correct statement, allow statement $5^2 = 10^2 + 12^2 - 2 \times 10 \times 12 \cos \angle XAB$		
A1: acce	pt awrt 0.421 (answers in degrees gain M1 A0). Also 0.42 is A0		
	s area formula with $r = 10$ and any angle in radians. If they use degrees they must use the formula $\frac{\theta}{360} \times \pi 10^2$		
	ds angle in major sector ft their angle from (a) and uses sector formula or subtracts minor area from circle (al st use $(2\pi - 2 \times "0.421")$ but <i>r</i> may be 5 instead of 10 for this mark	low wor	k in
0 ,	ept awrt 272 (may reach this using degrees)		
	11 : Finds area of triangle <i>AXB</i> , using 10, 12 and their angle <i>XAB</i>		
	M1: Doubles area of triangle AXB		
	11 : Finds angle XBA (0.958) by valid method (cosine rule) (NOT 90 – XAB) and hence area XBY $=\frac{1}{2}5\times5$	$\times \sin 1.9$	163
Way 3:	M1 : Adds areas of triangles <i>XBY</i> and <i>XAY</i> (37.298 and 11.76) M1 : Finds length <i>XY</i> by cosine rule or elementary trigonometry (8.173) dM1 : Uses area of kite = $\frac{1}{2}$ "8.173"×12		
For each m	ethod A1: awrt 49- do not need units		

Question Number	Scheme	Marks
10.	$f(x) = 6x^3 + ax^2 + bx - 5$	
(a)	Attempts $f(\pm 1)$ or Attempts $f(\pm \frac{1}{2})$ Or Use long division as far as remainder* Obtains $6(-1)^3 + a(-1)^2 + b(-1) - 5 = 0$ or $-6 + a - b - 5 = 0$ or $a - b = 11$ or equivalent Obtains $6(\frac{1}{2})^3 + a(\frac{1}{2})^2 + b(\frac{1}{2}) - 5 = -15$ or $\frac{6}{8} + \frac{a}{4} + \frac{b}{2} - 5 = -15$ or $a + 2b = -43$ or equivalent Solve simultaneous equations to obtain $a = -7$ and $b = -18$	M1 A1 A1 M1 A1
(b)	$6x^{3} + ax^{2} + bx - 5 = (x+1)(6x^{2} + \dots x + \dots)$ $6x^{3} - 7x^{2} - 18x - 5 = (x+1)(6x^{2} - 13x - 5)$ $(6x^{2} - 13x - 5) = (ax+b)(cx+d) \text{ where } ac = "6" \text{ and } bd = "\pm 5"$ = (x+1)(2x-5)(3x+1)	[5] M1 A1 M1 A1 [4]
	Notes	9 marks

(a) M1: Using remainder theorem: As on scheme. One of these is sufficient do not need to equate to 0 and to -15 *Using Long division: need at least $6x^2 + (a-6)x + \dots$ as quotient, and get as far as remainder or for the other division reaches $3x^2 + (\frac{a+3}{2})x + \dots$ as quotient, and get as far as remainder. A1: Any equivalent form *e.g. -11 - b + a = 0 (using remainder after division) The mark is earned for a - b= 11even if "=0" not explicitly seen A1: Any equivalent form *e.g. $-5 + \frac{b}{2} + \frac{a+3}{4} = -15$ (using remainder after division) Must be accurate but may be unsimplified. NB Using 15 instead of -15 is A0 M1: Solves their linear equations to obtain a or b A1: Both a and b correct. Correct answers without working can earn M1A1. (b) M1: Recognises (x+1) is factor and obtains quadratic expression with correct first term by any method. Use of (x-1) is M0. NB Starting with (x + 1)(2x-1)(ax + b) is also M0 A1: Correct quadratic $(6x^2 - 13x - 5)$ **M1**: Attempt to factorise quadratic where ac = "6" and $bd = "\pm 5"$ A1: any correct combination e.g. = $2(x+1)(x-\frac{5}{2})(3x+1)$ or = $6(x+1)(x-\frac{5}{2})(x+\frac{1}{3})$ etc... (on one line) Following a correct value for *a* and for *b*: They may just write the factorised answer down. For a correct answer this is M1A1M1A1 For $= (x+1)(x-2.5)(x+\frac{1}{3})$ award M1A0M1A0 For correct answer following incorrect quadratic give M1 A0 M1 A0 – fortuitous If the correct answer follows incorrect a and b, it is fortuitous and again M1A0M1A0 should be given.

Question Number	Scheme	Marks
11		
(a)	$\left(0,-\frac{\sqrt{3}}{2}\right)$	B 1
	and $(60^\circ, 0)$ and $(240^\circ, 0)$ and $(-120^\circ, 0)$ and $(-300^\circ, 0)$	B1 B1 [3]
(b)	$\sin(x-60^{\circ}) = \frac{\sqrt{6}-\sqrt{2}}{4} \ (=$	M1
	0.2588) $x - 60^\circ = 15^\circ \text{ (or } 165^\circ \text{ or } - 195^\circ \text{ or } - 345^\circ) \text{ or } 0.262 \text{ or } \frac{\pi}{12} \text{ radians}$ So $x = 75^\circ \text{ or } 225^\circ \text{ or } - 135^\circ \text{ or } -285^\circ \text{ (allow awrt)}$	A1 M1 A1 A1 [5]
	Notes	8 marks
B1	: Correct exact y intercept (not decimal) – allow on the diagram or in the text. Allow $y = -$ for 2 correct x intercepts then third B1 for all 4 correct x intercepts (may or may not be g ordinates – may be given on graph) Must be in degrees. (Extra answers in the range lose the)	iven as
(b) M M sta A1 M inv A1 ign	1 : Divides by 4 first giving correct statement $sin(x-60^\circ) = \frac{\sqrt{6}-\sqrt{2}}{4}$ but $(x-60^\circ) = \frac{\sqrt{6}}{4}$ 0 and $sin x - sin 60^\circ = \frac{\sqrt{6}-\sqrt{2}}{4}$ is also M0 and $sin(x-60^\circ) = \frac{\sqrt{4}}{4}$ is M0 if not preceded by tement 1: Obtains 15° (or 165° or – 195° or – 345°) 1: Adds 60° to their previous answer which should have been in degrees and obtained by usiverse sine 1: Two correct answers second A1: All four correct answers Extra answers outside range mored. Lose final A mark for extra wrong answers in the range.	y correct
An	they approximate too early allow awrt answers given for full marks . (e.g. 75.01 etc) aswers in mixture, degrees and radians : Allow first M A1 only so M1A1M0A0A0 for 60 ample	.262 for

Question Number	Scheme	Marks
12.(a)	Uses $275000 \times (1.1)^5$ or finds £442890.25 or uses $275000 \times (1.1)^4$ or finds £402627.50 Finds both of the above and subtracts to give £40 262.75 and concludes approx. £40300*	M1 M1 A1*
	Or Uses $275000 \times (1.1)^5 - 275000 \times (1.1)^4$, = <i>awrt</i> 40260 = 40300 (3 <i>sf</i>)*	[3] M1 M1,A1* [3]
(b)	Puts $275000 \times (1.1)^{n-1} > 1000000$ or $275000 \times (1.1)^{n-1} = 1000000$ $(1.1)^{n-1} > \frac{1000000}{275000}$ (or $\frac{40}{11}$ or 3.63 or 3.64). Or $(1.1)^{n-1} = \frac{1000000}{275000}$ (or $\frac{40}{11}$ or 3.63 or 3.64)	M1 M1
	$n-1 > \frac{\log(\frac{40}{11})}{\log 1.1}$ or $n-1 = \frac{\log(\frac{40}{11})}{\log 1.1}$ (n>14.5 or n>14.6 or n=15) so the year is 2030	M1 A1 [4]
(c)	Uses $S = \frac{275000(1.1^n - 1)}{1.1 - 1}$ or uses $S = \frac{275000(1 - 1.1^n)}{1 - 1.1}$ Uses $n = 11$ in formula Awrt £5 096 100 Or: adds 11 terms £275000 + 302500 + 332750 + 366025 + 402627.5 + 442890.25 + 487179.275 + 535897.2025 + 589486.9228 + 648435.615 + 713279.1765 = awrt 5096100 (see notes below)	[4] M1 A1 A1 [3]
		10 marks
	Notes	

(a) M1: for correct expression for profit in 2021 or in 2020, by any method (including subtracting the sums S_{n+1} - S_n) to give a term

M1: for finding both correct expressions and subtracting

A1: answers wrt£442900 and wrt£402600 subtracted or wrt£40260 obtained then rounded to £40300 (answer given)

(b) M1: Correct inequality – or allow equality . N.B. $250000 \times (1.1)^n$ or $302500 \times (1.1)^{n-2}$ on LHS are also correct.

M1: Division – isw if initial fraction is correct. Not dependent on previous mark. It could follow wrong combination of a and n for example, which would give M0 M1

M1: Correct use of logs to give *n* or $n-1 > \frac{\log(k)}{\log 1.1}$ or $\log_{1.1} k$ after $(1.1)^{n-1} > k$ Allow equality for this mark

(3.63 is truncated value of $\frac{40}{11}$ and 3.64 is rounded value – allow either of these if used in place of fraction)

A1: 2030 is required. If inequalities are used and errors are seen, then this mark is A0 (even for 2030) (Trial and improvement or listing can have full marks for the correct answer, need to see both 14^{th} and 15^{th} term – otherwise zero)

Special case: If *n* is used instead of n - 1 and they reach 2029 then mark profile is likely to be M0 M1 M1 A0 **unless they recover to the correct answer when full marks may be earned**

If an equals sign is used throughout and then correct answer is obtained allow 4/4

Special case: Uses Sum formula - Can earn M0 M0 M1 A1 for "correct work"

Uses $S = \frac{275000(1.1^n - 1)}{1.1 - 1} > 1000000$ (M0) $1.1^n > 1 + \frac{1000000}{2750000}$ (M0) $n > \frac{\log(15/11)}{\log 1.1}$ (M1) n > 3.254.... so 2019 (A1)

Using this method with errors can earn M0M0M1A0 for proceeding from $1.1^n > k$ with k > 0 to $n > \frac{\log(k)}{\log 1.1}$

(c) **M1**: Correct *a* and *r* but *n* may be wrong

A1: Correct use of formula with n = 11

A1: awrt £5 096 100 (again – this answer implies all 3 marks)

Or M1: adds 11 terms (mostly correct)

 $\pounds 487179.275 + \pounds 535897.2025 + \pounds 589486.9228 + \pounds 648435.615 + \pounds 713279.1765$

A1: correct answer = awrt \pounds 5096100 (this implies two previous marks)

	Notes	
	_	15 marks
	$k = 8 \pm \sqrt{24}$ or $8 \pm 2\sqrt{6}$ or $\frac{16 \pm \sqrt{96}}{2}$	[2]
(u)	give	M1A1
(d)	If they use gradient of tangent to do part (c) see the end of the notes below*. Solve the given quadratic or their quadratic by formula or completion of the square to	[4]
	So obtain $(k-8)^2 = 24$ i.e. $k^2 - 16k + 40 = 0$ *	A1 *
	Uses condition for equal roots $"b^2 = 4ac"$ on their three term quadratic to get expression in k	ddM1
	So $6x^2 + (k-8)x + 1 = 0$	dM1
(c)	When this line meets the curve $2(3x^2 - 4x + 2) + kx - 3 = 0$	M1
	Both $x = \frac{1}{6}$ and $y = 1\frac{5}{12}$ i.e. $(\frac{1}{6}, 1\frac{5}{12})$ or (0.17, 1.42) { Ignore (1, 1) listed as well }	A1 [4]
	$x = \frac{1}{6}$ or $y = 1\frac{5}{12}$	A1
	=	
	Solve three term quadratic e.g $6x^2 - 7x + 1 = 0$ or $12y^2 - 29y + 17 = 0$ to give $x =$ or y	M1
(b)	Eliminate x or y to give $2(3x^2 - 4x + 2) + x - 3 = 0$ or $y = 3(3 - 2y)^2 - 4(3 - 2y) + 2$	M1
		[5]
	$\therefore (y-1) = -\frac{1}{2}(x-1)$ and so $x + 2y - 3 = 0*$	M1 A1*
	At (1, 1) gradient of curve is 2 and so gradient of normal is $-\frac{1}{2}$	M1
(a)	$\frac{1}{\mathrm{d}x} = 6x - 4 + \left\{0\right\}$	
	$\frac{dy}{dx} = 6x - 4 + \left\{0\right\}$	M1A1
13.	$y = 3x^2 - 4x + 2$	
Question Number	Scheme	Marks

(a) **M1:** Evidence of differentiation, so $x^n \rightarrow x^{n-1}$ at least once A1: Both terms correct M1: Substitutes x = 1 into their derivative and uses perpendicular property M1: Correct method for Linear equation, using (1,1) and their changed gradient A1: Should conclude with printed answer (this answer is given in the question) (b) M1: May make sign slips in their algebra; $\{e.g. substitute 3 + 2y\}$ - does not need to be simplified so isw. But putting $3(3-2y)^2 - 4(3-2y) + 2 = 0$ instead of = y is M0 M1: Solve three term quadratic to give one of the two variables A1: One Correct coordinate – accept any equivalent A1: Both correct – any equivalent form. Allow decimals if correct awrt (0.17, 1.42) (ignore (1,1) given as well) (c) M1: Eliminate y (condone small copying errors) **dM1:** Collect into 3 term quadratic in *x* or identifies "*a*", "*b*" and "*c*" clearly (may be implied by later work). **ddM1:** Uses condition " $b^2 = 4ac$ " on quadratic in x (dependent on both previous M marks) **NB M0** for $b^2 > 4ac$ or $b^2 \ge 4ac$ or $b^2 \le 4ac$ or $b^2 \le 4ac$ A1: Need $(k-8)^2 = 24$ or equivalent before stating printed answer *Alternative method for part (c) M1: Use gradient of line = gradient of curve so $[6x-4] = [-\frac{k}{2}]$ M1: Find $x = \frac{2}{3} - \frac{k}{12}$ and use line equation to get $y = \frac{3}{2} - \frac{1}{3}k + \frac{k^2}{24}$ (these equations do not need to be simplified) M1: Find $x = \frac{2}{3} - \frac{k}{12}$ and use curve equation to get $y = \frac{2}{3} + \frac{k^2}{48}$ (these equations do not need to be simplified) A1: Puts two correct expressions for y equal and obtains printed answer without error. (d) M1: Solve by formula or completion of the square to give k = (Attempt at factorization is M0)A1: Correct answer – should be one of the forms given in the main scheme or equivalent exact form Answers only with no working 2 marks (exact and correct) or 0 marks (approximate or wrong)

Question Number	Scheme	Marks		
14. (i)	Way 1: Use $\frac{\sin x}{\cos x} = \tan x$ to give $\tan x = $ Way2: complete method to find $\sin x = \operatorname{or} \cos x =$	M1		
	$\tan x = -\frac{7}{3}$ or $\sin x = \pm \frac{7}{\sqrt{58}}$ or $\cos x = \pm \frac{3}{\sqrt{58}}$	A1		
	So <i>x</i> = 113.2, 293.2	M1 A1 [4]		
(ii)	$10\cos^2\theta + \cos\theta = 11(1-\cos^2\theta) - 9$	M1		
	Solves their three term quadratic " $21\cos^2\theta + \cos\theta - 2 = 0$ " to give $\cos\theta =$	M1		
	So $(\cos \theta =) -\frac{1}{3}$ or $\frac{2}{7}$	A1		
	$\theta = 1.91, 4.37, 1.28$ or 5.00 (allow 5 instead of 5.00)	M1 A1 A1 [6]		
		10 marks		
	Notes			
(i) M1: (Wa	(ay 1) Attempts to use $\frac{\sin x}{\cos x} = \tan x$ (there may be a sign error or may omit x and write ta	an =)		
(Way 2) $3\sin x = -7\cos x$ so $9\sin^2 x = 49\cos^2 x$ and uses $\sin^2 x + \cos^2 x = 1$ to find $\sin x = $ or $\cos x =$				
A1: must be $\tan x = -\frac{7}{3}$ (way 1) or allow $\sin x = \pm \frac{7}{\sqrt{58}}$ or $\cos x = \pm \frac{3}{\sqrt{58}}$ (way 2). Ignore $\cos x = 0$ as extra				
answer. M1: One correct angle in degrees in range – so need either 113.2 or 293.2 in most cases				
But If they h	had $\tan x = -\frac{3}{7}$, then obtaining 156.8 or 336.8 is equivalent work and gains M1			
If however they had $\tan x = +\frac{7}{3}$, then obtaining an answer in the range is not equivalent work – so is M0				
Working in	wo answers - accept awrt 113.2 and 293.2 Extra answers in range – lose this mark radians gives a maximum of M1A1M0A0 blaces $\sin^2 \theta$ by $(1-\cos^2 \theta)$			
M1: Collect	s terms and solves their three term quadratic by usual methods (see notes)			
	rrect answers needed, but isw if one then rejected. Allow awrt -0.333 and 0.286 verse cosine to obtain at least two correct answers for their values of cosine (check with	calculator if		
they have fo	llowed wrong values)			
A1: All four	o completely correct answers (allow awrt) c correct (awrt) Allow 0.608π , 1.39π , 0.408π , or 1.59π			
Extra answe lose final A	ers outside range – ignore Extra answers in the range – lose final mark. Inaccurate an mark	swers to 3sf		
Answers in	degrees lose final two marks			
So two of a	wrt 73, 287, 109 (or 109.5), 251 (or 250.5) would earn M1A0A0			

Question Number	Scheme	Marks	
15.	$y = x^3 + 10x^{\frac{3}{2}} + kx$		
(a)	$\frac{dy}{dx} = 3x^2 + 10 \times \frac{3}{2}x^{\frac{1}{2}} + k$	M1 A1 [2]	
(b)	Substitutes $x = 4$ and $\frac{dy}{dx} = 0$ to give $3(4)^2 + 15(4)^{\frac{1}{2}} + k = 0 \implies k = -78 *$	M1 A1*	
(c)	When $x = 4$, $y = -168$ (see this stated – or see rectangle has height 168) $\int x^3 + 10x^{\frac{3}{2}} - 78x \ (+168) dx = \frac{1}{4}x^4 + \frac{10}{\frac{5}{2}}x^{\frac{5}{2}} - \frac{78}{2}x^2 \ (+168x + c)$	[2] B1 M1 A1	
	Use limits 0 and 4 to give ± 432 or if $168x$ included to give ± 240 Rectangle area is $4 \times "168"$ (= 672) or see $168x$ in integrated answer with limits	dB1 M1	
	So <i>R</i> has area " $672 - 432$ " or see +168 in original integrand = 240	M1 A1 [7] 11 marks	
	Notes		
(-)			
(a)	M1: Fractional power dealt with correctly so becomes $\frac{3}{2}x^{\frac{1}{2}}$ (may be implied by simplification to 15) A1: All terms correct, may not be simplified		
(b)	M1: Substitutes $x = 4$ and $\frac{dy}{dx} = 0$ Must see $3(4)^2 + 15(4)^{\frac{1}{2}} + k = 0$ or $48 + 30 + k = 0$)	
(c)	*A1: This is a printed answer so all must be correct in the working and conclusion a needed.	<i>k</i> = -78 is	
	B1: Substitute into $y =$ to find y (This may appear anywhere in the answer) M1: Attempt to integrate so at least one power increases A1: Accept unsimplified correct answer and allow with or without their +168 x , or even with their -168 x dB1: Use limit 4 to give 432 but may be implied by later answer 240- needs to follow M1A1 for integration M1: Calculates rectangle area (may be by integration). Must be rectangle and not triangle area M1: Subtracts (either way round) numerical areas – should be (+) – (+) or (-) – (-) (subtraction may be in their original integral but penalize wrong sign here eg -168 x instead of +168 x) (Again use of triangle is M0) A1: 240 only (Can recover from -240 to 240) Common error:		
	If 168 <i>x</i> (instead of 168) is integrated this may only gain a maximum of B1 M1 A1 seeing 432 calculated if integrals are separated) M0 M0 A0 4/7	dB1 (for	

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE