

Mark Scheme (Results)

January 2014

Pearson Edexcel International Advanced Level Core Mathematics C12 (WMA01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014 Publications Code IA037660 All the material in this publication is copyright © Pearson Education Ltd 2014

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^{2} + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to $x = \dots$

2. Formula

Attempt to use the <u>correct</u> formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first. Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

Question Number	Scheme	Marks
1.	$\left(2 - \frac{x}{2}\right)^6 = 2^6 + \binom{6}{1} 2^5 \cdot \left(-\frac{x}{2}\right) + \binom{6}{2} 2^4 \cdot \left(\frac{-x}{2}\right)^2 + \dots$ $= 64, -96x, +60x^2 + \dots$	M1 B1, A1, A1
	Special case = 64, $-192\left(\frac{x}{2}\right)$, $+240\left(\frac{x}{2}\right)^2$ + This is correct but unsimplified M1B1A1A0	[4]
		4 marks
Alternative method	$[2^{6}]\left(1-\frac{x}{4}\right)^{6} = [2^{6}]\left(1+\binom{6}{1}\left(-\frac{x}{4}\right)+\binom{6}{2}\left(\frac{-x}{4}\right)^{2}+\dots\right)$	M1
	$= 64, -96x, +60x^2 + \dots$	B1, A1, A1
	Notes	
	M1: The method mark is awarded for an attempt at Binomial to get the second and/or third ter correct binomial coefficient combined with correct power of <i>x</i> . Ignore bracket errors or errors of in powers of 2 or sign or bracket errors. Accept any notation for ${}^{6}C_{1}$ and ${}^{6}C_{2}$, e.g. $\begin{pmatrix} 6\\1 \end{pmatrix}$ and $\begin{pmatrix} 6\\2 \end{pmatrix}$ (unsimplified) or 6 and 15 from Pascal's triangle This mark may be given if no working is show or both of the terms including <i>x</i> is correct.	rm - need (or omissions) 52 vn, but either
	B1: must be simplified to 64 (writing just 2^6 is B0). This must be the only constant term (do A1: is cao and is for $-96 x$. The x is required for this mark. Allow +(-96x)	not isw here)
	A1: is cao and is for $60x^2$ (can follow omission of negative sign in working)	
	Any extra terms in higher powers of x should be ignored	
	Isw if this is followed by $= 16, -24x, +15x^2 +$	
	Allow terms separated by commas and given as list Alternative Method	
	M1: Does not require power of 2 to be accurate	
	B1: If answer is left as $64\left(1+\binom{6}{1}\left(-\frac{x}{4}\right)+\binom{6}{2}\left(\frac{-x}{4}\right)^2+\right)$ Allow M1 B1 A0 A0	

Question Number	Scheme	Marks
2.(a)	$f'(x) = -16x^{-3} - 2x^{-\frac{1}{2}} + 3$ or $f'(x) = -\frac{16}{x^3} - \frac{2}{\sqrt{x}} + 3$	M1 A1 A1
		[3]
(b)	$\int f(x)dx = -8x^{-1} - \frac{4x^{\frac{3}{2}}}{\frac{3}{2}} + \frac{3x^{2}}{2} - x + (c)$	M1 A1 A1
	$\int f(x)dx = -8x^{-1} - \frac{8x^{\frac{3}{2}}}{3} + \frac{3x^2}{2} - x + c \text{ or } \frac{-8}{x} - \frac{8x\sqrt{x}}{3} + \frac{3x^2}{2} - x + c$	A1
		[4]
		7 marks
	Notes	
(a)	M1: Attempt to differentiate – power reduced $x^n \rightarrow x^{n-1}$ or $3x$ becomes 3 A1: two correct terms (of the three shown). They may be unsimplified A1: fully correct and simplified then isw (any equivalent simplified form acceptable)	
(b)	M1: Attempt to integrate original $f(x)$ - one power increased $x^n \rightarrow x^{n+1}$ A1: Two of the four terms in <i>x</i> correct unsimplified – (ignore lack of constant here) A1: Three terms correct unsimplified – (ignore lack of constant here)	
	A1: All correct simplified with constant – allow $-1x$ for $-x$ N.B Integrating answer to part (a) is M0	

Question Number	Scheme	Mar	·ks
3.	$f(x) = 10x^3 + 27x^2 - 13x - 12$		
(a)	Attempts $f(\pm 2)$ or $f(\pm 3)$ Or Uses long division as far as a remainder	M1	
	(i) $\{f(2) =\}$ 150 (ii) $\{f(-3)=\}$ 0	A1 A1	[2]
(b)	$10x^3 + 27x^2 - 13x - 12 = (x+3)(10x^2 + \dots$	M1	[3]
	$10x^3 + 27x^2 - 13x - 12 = (x+3)(10x^2 - 3x - 4)$	A1	
	" $(10x^2 - 3x - 4)$ " = $(ax + b)(cx + d)$ where $ ac = 10$ and $ bd = 4$	dM1	
	=(x+3)(5x-4)(2x+1)	A1	
			[4]
		7 ma	rks
	Notes		
(a)	M1: As on scheme A1: for 150, next A1: for 0 Both cao (If division has been used it should be clear that they know these values are the remainders)		
(b)	M1: Recognises $(x+3)$ is factor and obtains correct first term of quadratic factor by division or any other method		
	A1: Correct quadratic [may have been done in part (a)]dM1: Attempt to factorise their quadratic		
	A1: Need all three factors together, accept any correct equivalent e.g. $10(x+3)(x-\frac{4}{5})(x+\frac{1}{2})$		
	If the three roots of $f(x) = 0$ are given after correct factorisation then isw		
	Special case. Just writes down the three factors $= (x+3)(5x-4)(2x+1)$ with no working : Full		
	marks		
	Allow trial and error or use of calculator for completely correct answer $-$ so 4 marks or 0 marks if "hence" is not used.		

Question	Scheme	Marks	
Number			
4. (i)	$\frac{4(2\sqrt{2}+\sqrt{6})}{(2\sqrt{2}-\sqrt{6})(2\sqrt{2}+\sqrt{6})}$	M1	
	$(2\sqrt{2} - \sqrt{6})(2\sqrt{2} + \sqrt{6}) = 8 - 6 = 2$	B1	
	$\sqrt{6} = \sqrt{2}\sqrt{3}$ used in numerator - may be implied by a correct factorisation of numerator	B1	
	$4(2\sqrt{2}+\sqrt{6})$		
	Concludes $\frac{(1+1)}{2} = 2\sqrt{2}(2+\sqrt{3})$ *	Al *	
(ii)	1 st two terms $\sqrt{27} = 3\sqrt{3}$ and $\sqrt{21} \times \sqrt{7} = 7\sqrt{3}$	[4] B1	
	3^{rd} term See $2\sqrt{3}$ or $\frac{6\sqrt{3}}{3}$	B1	
	$3\sqrt{3} + 7\sqrt{3} - 2\sqrt{3} = 8\sqrt{3}$ or $3\sqrt{3} + 7\sqrt{3} - \frac{6\sqrt{3}}{3} = 8\sqrt{3}$ *	B1 *	
Alternative	Assume result and multiply both sides by $(2\sqrt{2} - \sqrt{6})$		
for (i)	$(2\sqrt{2}, \sqrt{6})(\sqrt{2}+2\sqrt{6})$ 16 12 4		
	$(2\sqrt{2} - \sqrt{6})(4\sqrt{2} + 2\sqrt{6}) = 10 - 12 = 4$	BIBI	
	So $LHS = RHS$ and result is true	AI [4]	
Alternative for (ii)	$\frac{\sqrt{81} + \sqrt{21 \times 7 \times 3} - 6}{\sqrt{3}} \qquad Or \ \sqrt{81} + \sqrt{21 \times 7 \times 3} - 6 = 8\sqrt{3}\sqrt{3}$	B1	
	$\frac{9+21-6}{\sqrt{3}} \qquad \qquad 9+21-6=$	B1	
	$\frac{24}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = 8\sqrt{3} \qquad 9 + 21 - 6 = 24 \qquad \text{so equation is true}$	B1 [3] (7 marks)	
	Notes		
(i) M1: Multip	lies numerator and denominator by $\pm (2\sqrt{2} + \sqrt{6})$		
B1: correct B1: Splits	treatment of denominator to give 2 (may be implied by answer obtained with no errors seen) $\sqrt{6} = \sqrt{2}\sqrt{3}$ - may be implied, but B0 for $2\sqrt{6} = 2\sqrt{2}(2\sqrt{3})$ A1 cao reaches result and no errors	should be seen	
N.B. $\frac{4(2\sqrt{2})}{2}$	$\frac{\overline{2} + \sqrt{6}}{2} = 2\sqrt{2}(2 + \sqrt{3})$ may be awarded B1 A1 as there is an implication that $\sqrt{6} = \sqrt{2}\sqrt{3}$		
(ii) B1: expres B1: rationa	ses both of first two terms as multiple of root 3 correctly alises denominator in second term -may not see working		
B1: has used $3\sqrt{3} + 7\sqrt{3} - 2\sqrt{3} = 8\sqrt{3}$ N.B. $3\sqrt{3} + 7\sqrt{3} - \frac{6}{\sqrt{3}} = 8\sqrt{3}$ is B1B0B0			
(i) Alternative	M1: Assume result and multiply both sides by $(2\sqrt{2} - \sqrt{6})$		
	2nd B1 : Uses $\sqrt{2}\sqrt{3} = \sqrt{6}$ 1st B1 : Multiplies out these two brackets to give 4 A1 : conclusion		
(ii) Alternativos	B1: Uses common denominator or multiplies both sides by root 3 and obtains correct unsimplified equ	ation	
Anematives	B1: LHS numerator correctly simplified or just see $9 + 21 - 6$		
	B1: In the first alternative must see multiplication of numerator and denominator by $\sqrt{3}$ to give $8\sqrt{3}$	In the second	
	need statement LHS = RHS and so true		

Question Number	Scheme	Marks
5.		
(a)	$u_2 = 2 - \frac{4}{3} = \frac{2}{3}, \ u_3 = 2 - \frac{4}{\frac{2}{3}} = -4, \ u_4 = 2 - \frac{4}{-4} = 3$	M1 A1 A1
(b)	$u_{61} = 3$.	[3] B1
(c)	$\sum_{i=1}^{99} u_i = (3 + \frac{2}{3} - 4) + (3 + \frac{2}{3} - 4) + (3 + \frac{2}{3} - 4) + \dots$	[1] M1
	$\sum_{i=1}^{99} u_i = 33 \times (\dots + \dots + \dots) , = -11$	A1, A1
(c)	Alternative method for part (c) Adds $n \times "3" + n \times " - 4" + n \times "\frac{2}{2}"$	[3] M1
	Uses $n = 33$ -11	A1 A1 [3] 7 marks
	Notes	7 1111113
(a) (b)	M1: Attempt to use formula correctly (implied by first term correct, or given as 0.67, or third term through from their second etc) A1: two correct answers A1: 3 correct answers (allow 0.6 recurring but not 0.667) Look for the values. Ignore the u_r label	1 following
(c)	B1 : cao (NB Use of AP is B0)	
	M1: Uses sum of at least 3 terms found from part (a)) (may be implied by correct answer). Attemp AP here is M0.	pt to sum an
	A1: obtains $33 \times (\text{sum of three adjacent terms})$ or $11 \times (\text{sum of nine adjacent terms})$	
	A1: - 11 cao (-11 implies both A marks) N.B. Use of $n = 99$ is M1A0A0	

Question	Scheme	Montra
Number		Marks
6.	$\log_4 \frac{a}{b} = 3 \text{ or } \log_4 a + \log_4 b = \log_4 25 \text{ or } \log_4 \frac{a}{\frac{25}{a}} = 3 \text{ or } \log_4 \frac{\frac{25}{b}}{b} = 3$ (If this is preceded by wrong algebra (e.g. b = 25 -a) M1 can still be given if their b is used	M1
	$\log_4 64 = 3$ or $4^3 = 64$ (may be implied by the use of 64) or see $\log a = \frac{1}{2}(\log 25 + 3)$ become $a = 4^{\frac{1}{2}(\log 25 + 3)}$ or see $\log b = \frac{1}{2}(\log 25 - 3)$ become $b = 4^{\frac{1}{2}(\log 25 - 3)}$ (these latter two statements will be implied by correct answers)	B1
	Correct algebraic elimination of a variable to obtain expression in a or b without logs	dM1
	$a = 40$ or $b = \frac{5}{8}$	A1
	Substitutes to give second variable or solves again from start	dM1
		UNI I
	$a = 40$ and $b = \frac{3}{8}$ and no other answers.	
		A1
		[6] 6 marks
	Notes	
	M1 : Uses addition or subtraction law correctly for logs (N.B. $\log_4 a + \log_4 b = 25$ is M0) B1 : See number 64 used (independent of M mark) or or see $\log a = \frac{1}{2}(\log 25 + 3)$ become $a = 4^{\frac{1}{2}(\log 25 + 3)}$	
	or see $\log b = \frac{1}{2}(\log 25 - 3)$ become $b = 4^{\frac{1}{2}(\log 25 - 3)}$ dM1 : Dependent on first M mark. Eliminates <i>a</i> or <i>b</i> (with appropriate algebra) and eliminates logs A1 : Either <i>a</i> or <i>b</i> correct dM1 : Dependent on first M mark . Attempts to find second variable A1 : Both <i>a</i> and <i>b</i> correct – allow <i>b</i> = 0.625 If <i>a</i> = -40 and <i>b</i> = -5/8 are also given as answers lose the last A mark . NB Log <i>a</i> + log <i>b</i> = 2.3219will not yield exact answers	
	If they round their answers to 40 and 0.625 after decimal work, do not give final A mark. NB: Some will change the base of the log and use $\log a - \log b = 3\log 4$	

Question Number	Scheme	Marks
7. (a)	$12\sin^2 x - \cos x - 11 = 0$	P1 *
	$12(1-\cos^2 x) - \cos x - 11 = 0$ and so $12\cos^2 x + \cos x - 1 = 0$ *	ы ^т [1]
(b)	Solve quadratic to obtain $(\cos x) = \frac{1}{4}$ or $-\frac{1}{3}$	M1 A1
	x = 75.5, 109.5, 250.5, 284.5 Answers in radians (see notes)	M1 A1cao
		[4]
	Notos	5 marks
	inotes	
(a)	B1: Replaces $\sin^2 x$ by $(1 - \cos^2 x)$ - or replace 11 by $11(\sin^2 x + \cos^2 x)$ and no errors seen to give printed answer including = 0	
(b)	M1: Solving the correct quadratic equation (allow sign errors), by the usual methods (see notes) – implied by correct answers A1: Both answers needed – allow 0.25 and awrt – 0.33 M1 Uses inverse cosine to obtain two correct values for x for their values of cosx e.g. (75.5 and 109.4 or 109.5) or (75.5 and 284.5) or (109.5 and 250.5) – allow truncated answers or awrt here. A1: All four correct – allow awrt. Ignore extra answers outside range but lose last A mark for extra answers inside range Answers in radians are 1.3, 5.0, 1.9 and 4.4 Allow M1A0 for two or more correct asnwers	

Question	Scheme	Marks
Number		
8		
0.	$kx^2 + 8x + 2(k+7) = 0$	
	Uses $b^2 - 4ac$ with $a = k, b = 8$ and attempt at $c = 2(k + 7)$	M1
	$b^2 - 4ac = 64 - 56k - 8k^2$ or $64 = 56k + 8k^2$ o.e.	A1
	Attempts to solve " $k^2 + 7k - 8 = 0$ " to give $k =$	dM1
	\Rightarrow Critical values, $k = 1, -8$.	A1cso
	Uses $b^2 - 4ac < 0$ or $b^2 < 4ac$ or $4ac - b^2 > 0$	M1
	$k^2 + 7k - 8 > 0$ gives $k > 1$ (or) $k < -8$	M1 A1
		[7]
		7 marks
	Notes	
	M1: Attempts $b^2 - 4ac$ for $a = k$, $b = 8$ and $c = 2(k+7)$ or attempt at c from quadratic = 0 (may c	mit bracket
	or make sign slip or lose the 2, so $2k + 7$ or $k + 7$ for example)	
	or uses quadratic formula to solve equation or uses on two sides of an equation or inequation	
	A1: Correct three term quadratic expression for $b^2 - 4ac$ - (may be under root sign)	
	dM1: Uses factorisation, formula, or completion of square method to find two values for <i>k</i> , or fin correct answers with no obvious method for their three term quadratic A1: Obtains 1 and -8	ds two
	M1: states $b^2 - 4ac < 0$ or $b^2 < 4ac$ anywhere (may be implied by the following work)	
	M1: Chooses outside region ($k <$ Their Lower Limit $k >$ Their Upper Limit) for appropriate	3 term
	quadratic inequality. Do not award simply for diagram or table. A1: $k > 1$ or $k < -8$ - allow anything which clearly indicates these regions e.g. $(-\infty - 8)$ or $(1, \infty)$	
	k > 1, $k < -8$ is A1 but $k > 1$ and $k < -8$ is A0	
	but $x > 1$, $x < -8$ is A0 (only lose 1 mark for using x instead of k) and $k \ge 1$ (or) $k \le -8$ is A0 Also	1 < k < -8 is
	M1 A0	
	N.B. Lack of working: If there is no mention of $b^2 - 4ac < 0$ or $b^2 < 4ac$	
	then just the correct answer $k > 1$, $k < -8$ can imply the last M1M1A1	
	$k \ge 1$, $k \le -8$ can imply M0M1A0	
	k > 1, $k < -8$ can imply M1M1A0	
	Anything else needs to apply scheme	

Question Number	Scheme	Ma	rks
9 .(a)	Uses $300 \times (1.05)^{23}$ Obtains 921 or 922 or 920	M1 A1	[2]
(b)	Uses $S = \frac{300(1.05^{24} - 1)}{1.05 - 1}$ Must have correct <i>r</i> and <i>n</i> but can use their <i>a</i> (e.g. 315)	M1	
	13351 (accept awrt 13400)	A1	
(c)	Uses $300(1.05)^{n-1} > 3000$ Or $300(1.05)^{n-1} = 3000$	M1	[2]
	$(n-1)\log 1.05 > \log 10$ Or $(n-1)\log 1.05 = \log 10$ Or $(n-1) = \log_{1.05} 10$ Of correct equivalent log work it $n > 48.19$ $N = 49$	M1 A1	[3]
		7 ma	ırks
	Notes		
(a)	M1: for correct statement of formula with correct <i>a</i> , <i>r</i> and <i>n</i> A1: cao (This answer implies the M1)		
(b)	M1: Correct formula with $r = 1.05$ and $n = 24$ ft their <i>a</i> (If they list all the terms – correct answer implies method mark)		
(c)	A1: answers which round to 13400 are acceptable M1: Correct inequality or uses equality and interprets correctly later (ft their a)		
	M1: Correct algebra then correct use of logs on their previous line (may follow use of =, or use of n instead of n -1) Can get M0M1A0		
	A1: need to see 49 or 49 th month		
	Special case : Uses sum formula: If they reach $(1.05)^n > 1\frac{1}{2}$ and then use logs correctly to give		
	$n\log(1.05) > \log 1\frac{1}{2}$ then give M0M1A0		
	If trial and error is used then the correct answer implies the method. So 49 is M1M1A1 and 48 scores M1M0A0. Similar marks follow answer only with no working.		

Question Number	Scheme	Marks
11. (a)	Uses $(2p-6) - 4p = 4p - 60$ or $4p = \frac{60 + (2p-6)}{2}$ or $60 + 2(4p-60) = 2p-6$ or etc or two correct equations with <i>d</i> So $p = 9$ *	M1 A1 *
Alternative to (a) (b)	Use $p=9$ to give 60, 36 and 12 and deduce $d = -24$ so conclude AP when $p = 9$ Uses $a + 19d$ with $a = 60$ Finds $d = 36 - 60 = -24$ So obtains -396	M1 A1 [2] M1 B1 A1 [3]
(c)	Uses $\frac{n}{2}(2 \times 60 + (n-1)d)$ Uses $\frac{n}{2}(2 \times 60 - 24(n-1))$	M1 A1
	= 12n (6-n) *	A1*
		8 marks
	Notas	8 marks
(a) (b) (c)	NotesM1: Correct equation to enable p to be found or two correct equations if d introduced and solvisimultaneous equations to eliminate d and enable p to be foundNB May add three terms and use sum formula giving e.g. $60 + 4p + 2p - 6 = \frac{3}{2}(60 + 2p - 6)$ A1: cso (Do not need intermediate step)M1: Correct formula with their value for d B1: $d = -24$ seen in (a) or (b)A1: -396If all terms are found and added $60 + 36 + 12 + -12 +$ Need 20 terms for M1, need -24 implied by first 4 terms for B1 and correct answer for A1M1:Uses correct formula with their value for d A1: given answer – must be no errors to award this markSpecial case: Proves formula for sum of APM1: Correct method of proof using their dA1: given answer – must be no errors to award this markSpecial case: not using their dA1: given answer – must be no errors to award this mark	8 marks ng

Question Number	Scheme	Marks
12. (a)	$15^2 = 10^2 + 10^2 - 2 \times 10 \times 10 \cos \angle BOC$	M1
	$\cos \angle BOC = \frac{10^2 + 10^2 - 15^2}{2 \times 10 \times 10}$ or $\frac{-25}{200}$ or -0.125	A1
	$\angle BOC = 1.696$ (N.B. 97.2 degrees is A0)	A1 [3]
(b)	Uses $s = 22\theta$ with their θ from part (a) not $-(2\pi - \theta)$	M1
	$r\theta = 22 \times 1.696 = 37.3(15)$	A1
	Perimeter = $r\theta$ + 15 + x + x , = 39 + <i>their arc length</i> [76.3 (m)]	M1 A1ft [4]
(c)	area of sector = $\frac{1}{2}(22)^2\theta$ -not -($2\pi - \theta$)	B1
	area of triangle = $\frac{1}{2}(10)^2 \sin \theta$	B1
	Area of paved area = $\frac{1}{2}(22)^2 \theta - \frac{1}{2}(10)^2 \sin \theta = 410.432 - 49.6$ or $410.432 - \frac{75\sqrt{7}}{4} = 360.8$ or	M1 A1
	awrt 361 (m ²)	
		[4]
		(11 marks)
	Notes	
(a)	M1: Uses cosine rule – must be correct or other correct trigonometry e.g. $2 \times \theta$ where $\sin \theta = \frac{7.5}{10}$	
	A1: makes cos subject of formula correctly or uses $2 \times \sin^{-1}\left(\frac{7.5}{10}\right)$	
	A1: accept awrt 1.696 (answer in degrees is A0). If answer is given as 1.70 (3sf) then A0 but rema are available (special case below)	uning As
(b)	M1: Uses $s = 22\theta$ with their θ in radians, or correct formula for degrees if working in degrees	
	A1: Accept awrt 37.3 (may be implied by their perimeter)M1: Adds arc length to 15 to two further equal lengths for PerimeterA1ft: Accept awrt 76.3 do not need metres ft on their arc length—so 39 + arc length	
(c)	B1: This formula used with their θ in radians or correct formula for degrees - allow miscopy B1: Correct formula for area – may use half base times height	of angle
	M1: Subtracts correct triangle (two sides of length 10) from their sector A1: awrt 361 – do not need units	
	Special case – uses 3 sf instead of 3 dp in part (a)	
	Loses final A mark in part (a) but can have A marks in part (b) for 37.4 and 76.4 and can have A r	nark in part
	(c) for awrt 362	*

Question Number	Scheme	Marks
13. (a)	So $y = 3x - 34 + \frac{75}{2}$	B1
	$\frac{dy}{dx} = 3 - 75x^{-2} + \{0\} \qquad (x > 0) \qquad \text{Accept } \frac{dy}{dx} = \frac{3x^2 - 75}{x^2} \text{ or equivalent}$	M1 A1
(b)	Put $\frac{dy}{dx} = 3 - 75x^{-2} = 0$ x = 5	M1
	Substitute to give $y = -4$	M1 A1
(c)	Consider $\frac{d^2 y}{dx^2} = 150x^{-3} > 0$	M1
	So minimum	A1 [2]
(d)	When $x = 2.5$, $y = 3.5$	B1
	Also gradient of curve found by substituting 2.5 into their $\frac{dy}{dx}$ (= -9)	M1
	So gradient of normal is $-\frac{1}{m} (=\frac{1}{9})$	dM1
	Either : $y = "\frac{1}{9}"(x-2.5)$ or : $y = "\frac{1}{9}"x + c$ and $"3.5" = "\frac{1}{9}"(2.5) + c \implies c = "3\frac{2}{9}"$	dM1
	So $\frac{x-9y+29=0}{9y-x-29=0}$ or $\frac{9y-x-29=0}{9y-x-29=0}$ or any multiple of these answers	A1
		[5]
		14 marks
	Notes	
(a)	B1: any correct equivalent 3 or 4 term polynomial M1: Evidence of differentiation following attempt at division, or at multiplication by x^{-1} , so $x^n \rightarrow x^n$	x^{n-1} at
	least once so $x^1 \rightarrow 1$ or x^0 or $x^{-1} \rightarrow x^{-2}$ not just $-34 \rightarrow 0$	
	A1: $3 - 75x^{-2}$ Both terms correct, and simplified. Allow even if 34 was incorrect. Do not need to	include
(b)	domain $x > 0$ dy	
	M1: Puts $\frac{1}{dx} = 0$	
	A1: Ignore extra answer $x = -5$ M1: Substitute into their $y = $ to find y	
(a)	A1: Ignore extra answer -64	
(C)	M1: Considers second derivative (by reducing by 1 a power of their $\frac{dy}{dx}$) and consider its sign, or co	onsiders
(d)	gradient either side, or considers shape of curve A1: Has correct second derivative*, has positive value for <i>x</i> (may not be used) and has stated >0 or equivalent and concludes "minimum" * Allow even if 3 was incorrect in first derivative. B1: cao	
	M1: Substitutes 2.5 into their gradient function (may not get -9)	
	dM1: Finds perpendicular gradient dM1: Equation of normal using their normal gradient, using $x = 2.5$ and their value for y. This depends on both previous method marks (Use of (5, -4) here is M0) A1: Must have = 0 and integer coefficients	

Question	Scheme	Montro
Number		Marks
14. (a)	$2x - 3 = x^2 - 2x - 15 \text{so} x^2 - 4x - 12 = 0$	M1
	x = 6 or x = -2	dM1 A1
	y = 9 or $y = -7$	dM1 A1
		[5]
(b)	$\int x^2 - 2x - 15 dx - \frac{1}{2} x^3 - x^2 - 15 x$	D 1
	$\int x^{2} - 2x - 15 dx = \frac{1}{3}x^{2} - x^{2} - 15x^{2}$	Ы
	Line meets x-axis at $x = 1^{\perp}$ (may be implied by use in limits or in triangle area) and curve meets	
	Due inclusive and $x = 1_2$ (may be implied by use in minus of in drangle area) and carve meets axis at $x = 5$. These numbers may appear on the diagram	B1 B1
	axis at $x = 5$. These numbers may appear on the diagram.	M1
	Uses correct combination of correct areas. Area of region = Area of large thangle MINUS $1 = 3 = 2 = 15$	IVI I
	$\left[\frac{1}{3}x^{2} - x^{2} - 15x\right]_{5}^{2}$	
	Area of large triangle = $\frac{1}{2} \times (6 - 1\frac{1}{2}) \times 9$ (may use rectangle – trapezium)	dM1
	$1 = (c - 1) = 0 = [c(1)c^3 - c^2 - 15 = c) = (1 + (5)^3 - (5)^2 - 15 = (5))]$	M1
	$= \frac{1}{2} \times (6 - 1\frac{1}{2}) \times 9 - [(\frac{1}{3}6 - 6 - 15 \times 6) - (\frac{1}{3}(5) - (5) - 15 \times (5))]$	1011
	$= 20.25 - (-54 - (-58\frac{1}{2})) = \frac{191}{12} = 15\frac{11}{12}$	Al
	12 12	[/] (12 marks)
		(12 mar k3)
	First Alternative method using "line – curve" and adding small triangle	
	$\int x^3 - x^$	B1
	$\int -x^{2} + 4x + 12dx = -\frac{3}{3} + 2x^{2} + 12x \text{ or } \int x^{2} - 4x - 12dx = \frac{3}{3} - 2x^{2} - 12x$	
	Line meets x-axis at $x = 1\frac{1}{2}$ and curve meets axis at $x = 5$	B1 B1
	Uses correct combination of correct areas. Area of region = Area of small triangle PLUS	N/I
	$\left[-\frac{1}{2}x^3 + 2x^2 + 12x\right]_c^6$	111
	Area of small triangle $-\frac{1}{2} \times (5 - 1\frac{1}{2}) \times 7$	dM1
	Free of small trangle $= \frac{1}{2} \times (3 - 1\frac{1}{2}) \times 7$	
	$\int_{C^{2}} (5 - 1) \int_{C^{2}} $	M1
	$\frac{1}{2} \times (5 - 1\frac{1}{2}) \times 7 + [(-\frac{1}{3}0 + 2 \times 0 + 12 \times 0) - (-\frac{1}{3}(5) + 2 \times (5) + 12 \times (5))]$	
	$=12.25 + (72 - (68\frac{1}{2})) = \frac{191}{100} = 15\frac{11}{100}$	A1
	12^{-12}	[7]
	Alternative method using "line – curve" (long method here and unlikely)	
	First three B marks as in First Alternative	B1 B1 B1
	Then	DIDIDI
	6 5	M1
	$-x^2 + 4x + 12dx \pm x^2 - 2x - 15dx$	
	$l_{\frac{1}{2}}$ $l_{\frac{1}{2}}$	
	5	D 61
	$x^2 - 2x - 15 \mathrm{d}x$	dM1
	$ \mathbf{J} $ $ \mathbf{l} \frac{1}{2} $	M1
	Uses limits correctly	A1
	$50\frac{5}{8} - 34\frac{17}{24} = 15\frac{11}{12}$	111
	0 27 12	

	Notes for Question 14	
(a)	M1: Puts equations equal dM1 Solves quadratic to obtain $x =A1: both answers correctdM1$: finds $y =A1: both correct$	
(b)	 B1: Correct integration of one of the quadratic expression (given in the mark scheme) to give one of the giv cubic expression (ignore limits). Allow correct answer even if terms not collected nor simplified. Sign error subtracting in alternative methods before integration gain B0 B1: Line intersection correct (see 1.5) B1: curve intersection correct (see 5) M1: Uses correct combination of correct areas (allow numerical slips) so (i)Area of triangle using their "6" – their "1.5" times their "9" MINUS area beneath curve between their 5 and their 6 (ii) Area of triangle using their "5" – their "1.5" times their "7" PLUS area between curves between their 5 and their 6 (iii) Subtracts area below axis from area between curves THEIR 1.5 must NOT BE ZERO! M1: Attempts second area (so area of a triangle relevant to the method- or integral of the linear function with relevant limits- or integral of original quadratic in second alternative method) M1: Uses their limits (even zero) correctly on any cubic expression (subtracting either way round) Can be given for wrong limits or for wrong areas. No evidence of substitution of limits is M0 A1: Final answer – not decimal – cso 	

Question Number	Scheme	Marks
15. (a) (b)	gradient = $\frac{11-3}{6-0}$, = $\frac{4}{3}$ Mid-point of $XY = (3, 7)$ ZM has gradient $-\frac{1}{m}$ $\left(=-\frac{3}{4}\right)$	M1 A1 [2] M1 A1 B1ft
	Either: $y - 7" = -\frac{3}{4}"(x - 3")$ or: $y = -\frac{3}{4}"x + c$ and $7" = -\frac{3}{4}"(3") + c \implies c = 9\frac{1}{4}"$	M1
	$4y + 3x - 37 = 0$ or $y - 7 = -\frac{3}{4}(x - 3)$ Or $y = -\frac{3}{4}x + 9\frac{1}{4}$	A1 [5]
(c)	Substitute $y = 10$ into their line equation to give $x =$	M1
	<i>x</i> = -1	A1 [2]
(d)	$(r^{2}) = (-1-0)^{2} + (10-3)^{2} $ or $(r^{2}) = (-1-6)^{2} + (10-11)^{2}$ $r^{2} = 50$ $"50" = (x \pm "(-1)")^{2} + (y \pm "10")^{2}$ $"50" = (x - "(-1)")^{2} + (y - "10")^{2}$ $x^{2} + y^{2} + 2x - 20y + 51 = 0$	M1 A1 M1 A1ft A1 [5] (14 marks)
	Alternative methods to part (d) (i)Use equation $x^2 + y^2 + ax + by + c = 0$ and substitute three points, usually (0,3), (6,11) and another point on the circle maybe (-2,17) or (-8,9) - not point Z Solves simultaneous equations a = 2, b = -20 and $c = 51(ii) Uses centre to write a = and b = (doubles x coordinate and y coordinate respectively,\pm"2" and \pm"20")Obtains a = 2 and b = -20 (or just writes these values down so these answers imply M1A1)Completes method to find c, (could substitute one of the points on the circle) or could find rAccurate work e.g. r^2 = 50 or e.g. x^2 + y^2 + 2x - 20y = (-8)^2 + 9^2 + 2x - 8 - 20 \times 9 =c = 51$	M1 dM1 A1,A1,A1 M1 A1 dM1 A1 A1

	Notes for Question 15	
(a)	M1: States gradient equation or uses correctly	
	A1: 4/3 or 8/6 or decimal equivalent	
(b)	M1: Uses midpoint formula, or implied by <i>y</i> coordinate of 7.	
	A1: (3, 7) cao	
	B1: : Uses negative reciprocal follow through their gradient	
	M1: Line equation with their midpoint and perpendicular gradient	
	A1: correct at any stage may be unsimplified , isw. Should be linear.	
(c)		
	M1: Substitute $y = 10$ into line equation to give $x =$	
	A1: cao (Answer only with no working may have M1A1)	
(d)	M1:Finds radius or diameter or r^2 using any valid method – probably distance from centre to one	e of the
	points. Need not state $r =$	
	A1: for any equivalent $r^2 = 50$ or $r = \sqrt{50}$ etc. Their numeric answer must be identified. If they have	alve it or
	double it, this is M1 A0.	
	M1: Attempt to use a true equation for circle with their centre and their radius or the letter r - allow	<i>w</i> sign slips
	in brackets. Do not allow use of r instead of r^2 in the equation	0 1
	A1ft: correct work ft their centre and genuine attempt at radius	
	A1: correct and given in this form	
	Alternative methods	
	Do not need to write out equation at the end $a = 2$, $b = -20$ and $c = 51$ is sufficient.	

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE