Centre Number			Candidate Number				For Examiner's Use
Surname							
Other Names							Examiner's Initials
Candidate Signature]	

General Certificate of Secondary Education Foundation Tier January 2011

PHY3F

Physics

Unit Physics P3

Written Paper

Wednesday 19 January 2011 9.00 am to 9.45 am

For this paper you must have:

• a ruler.

You may use a calculator.

Time allowed

45 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 45.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

Advice

• In all calculations, show clearly how you work out your answer.

Turn over ►

2	The drawing shows a skateboarder moving in a circular path.
	Centre of circular path
2 (a) (i)	What is the name of the resultant force which allows the skateboarder to move in a circular path?
	Draw a ring around your answer.
	centripetal force gravitational force weight (1 mark)
2 (a) (ii)	In which direction, A , B or C , does this resultant force act on the skateboarder?
	Write your answer, A , B or C , in the box. (1 mark)
2 (b)	Another skateboarder has a smaller mass.
	Complete the following sentences by drawing a ring around the correct line in each box.
2 (b) (i)	She uses the same part of the ramp at the same speed.
2 (b) (i)	She uses the same part of the ramp at the same speed. The force which allows her to move in a circular path will need
2 (b) (i)	She uses the same part of the ramp at the same speed. The force which allows her to move in a circular path will need decrease.
2 (b) (i)	She uses the same part of the ramp at the same speed. The force which allows her to move in a circular path will need decrease. to stay the same.
2 (b) (i)	She uses the same part of the ramp at the same speed. The force which allows her to move in a circular path will need decrease. to stay the same. increase.

		decrease.	
2 (b) (ii)	If she goes faster, this resultant force will need to	stay the same.	
		increase.	

(1 mark)

2 (c) On their website, the managers of a skateboard park give the following information about some of the ramps where skateboarders move in a circular path.

Name of ramp	Inside radius of the ramp in metres
Bull pit	6
Dragon's den	11
Tiger cage	8
Witch's cauldron	7

A skateboarder uses each ramp at the same speed.

Name the ramp where the resultant force on the skateboarder will need to be the greatest.

.....

Explain the reason for your answer.

.....

(2 marks)

Turn over for the next question

Turn over ►

Complete the following sentence by drawing a ring around the correct line in the box. To hold the model arm horizontal, the pull from the rubber band will be bigger than smaller than the force caused by the weight. the same as (1 mark) The diagram shows a long spanner. 12 cm Axis of rotation 10 N Use the equation in the box to calculate the moment, in Ncm, being produced. perpendicular distance from the line of moment = force × action of the force to the axis of rotation Show clearly how you work out your answer. Moment = N cm (2 marks) Turn over for the next question

3 (d)

Turn over ►

4 (c) Thousands of satellites are now in orbit around the Earth. A student used the Internet to collect information about some of them.

Name of satellite	Average distance from the centre of the Earth in kilometres	Speed in kilometres per second	Time taken to orbit the Earth
The Moon	391 400	1.01	28 days
GEO	42 200	3.07	1 day
Navstar	26 600	3.87	12 hours
Lageos	12 300	5.70	3.8 hours
HST	7 000	7.56	97 mins
ISS	6 700	7.68	92 mins

4 (c) (i) The Moon takes a longer time than any of the other satellites to orbit the Earth.

Give **one** other way in which the Moon is different from the other satellites in the table.

.....

.....

(1 mark)

4 (c) (ii) What conclusion on the relationship between the *average distance* and *speed* can the student come to on the basis of this data?

.....

4 (c) (iii) What conclusion on the relationship between the *speed* and the *time taken to orbit the Earth* can the student come to on the basis of this data?

(1 mark)

6

Turn over ►

6 (b)	Suggest two changes to the device, each one of which would make the coil spin faster.
	1
	2
	() mode
	(2 Marks)
6 (c)	Suggest two changes to the device, each one of which would make the coil spin in the opposite direction.
	1
	2
	(2 marks)
	Turn over for the next question

Turn over ►

 7 (d) A student investigates the relationship between the distance from the object to the lens and the magnification produced by the lens. The student's results are given in the table. The student did not repeat any measurements.

Distance in millimetres	Height of object in millimetres	Height of image in millimetres	Magnification produced
40	20	58	2.9
50	20	30	1.5
60	20	20	1.0
70	20	14	0.7
80	20	12	0.6
90	20	10	0.5

The student plots the points for a graph of *magnification produced* against *distance*.

7 (d) (ii)	Complete the followi	ng sentence by dr	awing a ring around the correct word in	the box.
	A line graph has bee	en drawn because	both variables are	
		categoric.		
	described as being	continuous.		
		discrete.		
				(1 mark)
7 (d) (iii)	Describe the relation	iship between <i>ma</i> g	gnification produced and distance.	
		Turn over for th	e next question	

Turn over ►

The diaphragm of a loudspeaker moves in and out.

8

A team of scientists investigated loudspeakers.

The scientists measured the size of the movement of the diaphragm for signals of different frequencies.

They kept all the other variables constant.

The graph shows the average results for a large number of tests on one of the loudspeakers.

8 (b)	The greater the movement of the diaphragm, the greater the amplitude of the sound produced.
	What is the frequency of the loudest sound which this loudspeaker produces?
	Show clearly on the graph how you get to your answer and then complete this answer space.
	Frequency =Hz (2 marks)
8 (c)	Can this loudspeaker produce the full range of sound which most people can hear?
	Put a tick (\checkmark) in the box next to your answer.
	Yes No
	Explain the reason for your answer.
	(2 marks)
8 (d)	Use one word to complete the sentence.
	Repeating tests a large number of times and taking the average of the results
	improves the
9 (0)	(1 mark)
o (e)	
	(1 mark)
	END OF QUESTIONS

Copyright © 2011 AQA and its licensors. All rights reserved.

