Surname					Other	Names			
Centre Number					Cand				
Candidate Signature									

AQA

General Certificate of Secondary Education June 2009

ADDITIONAL SCIENCE Unit Chemistry C2

CHEMISTRY Unit Chemistry C2

Foundation Tier

Thursday 4 June 2009 9.00 am to 9.45 am

For this paper you must have:

- a ruler
- the Data Sheet (enclosed).
- You may use a calculator.

Time allowed: 45 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or on blank pages will not be marked.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The maximum mark for this paper is 45.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

Advice

• In all calculations, show clearly how you work out your answer.

For Examiner's Use								
Question	Mark	Question	Mark					
1		7						
2		8						
3								
4								
5								
6								
Total (Co	lumn 1)							
Total (Co	olumn 2) -							
TOTAL								
Examine	r's Initials							

CHY2F

An indigestion tablet contains sodium hydrogencarbonate and citric acid.
When the tablet is added to cold water a chemical reaction takes place and there is a lot of fizzing.

2 (b) This chemical reaction is endothermic.

Water-

(a) The formula of the gas that causes the fizzing is CO_2

2 (b) (i) Tick (✓) the statement which describes what happens to the temperature of the solution.

Statement	Tick (✓)
The temperature of the solution will increase.	
The temperature of the solution will decrease.	
The temperature of the solution will stay the same.	

2 (b) (ii) Tick (\checkmark) the statement which describes what happens to the energy during the reaction.

Statement	Tick (✓)	
Energy is given out to the surroundings.		
Energy is taken in from the surroundings.		
No energy is given out to or taken from the surroundings.		
		(1 m

3

3 Ammonium nitrate is an important chemical. The diagram shows the main stages in the manufacture of ammonium nitrate.

Study the diagram and then answer the questions.

Turn over ►

5 (b) (i) Draw a ring around the correct word in each box to complete the sentence.

Each carbon atom in graphite is joined to

two		covalent	
three	other carbon atoms by	ionic	bonds.
four		metallic	

(2 marks)

5 (b) (ii) Tick (\checkmark) the statement which explains why graphite is soft and slippery.

Statement	Tick (✓)
It is made of layers of atoms.	
It is made of small molecules.	
It is an ionic compound.	

(1 mark)

5

Turn over for the next question

Turn over ►

6 Read the article and then answer the questions that follow.

6	(a)	Use	information from the article to help you to answer these questions.
6	(a)	(i)	Give two reasons why hydrogen is an excellent fuel.
			1
			2
6	(a)	(ii)	Hydrogen stored in lithium nitride is safer in an accident than a cylinder full of hydrogen gas.
			State why.
6	(a)	(iii)	What is the advantage of using 'nanosized' particles of lithium nitride instead of normal sized particles for storing hydrogen?
			Question 6 continues on the next page

Turn over ►

- 6 (b) Lithium nitride is an ionic compound that contains lithium ions (Li^+) and nitride ions (N^{3-}) .
- 6 (b) (i) The periodic table on the Data Sheet may help you to answer this question.

Which diagram, **A**, **B** or **C**, represents the electronic structure of a lithium atom? Write your answer in the box.

6 (b) (ii) Tick (\checkmark) the statement which describes how a lithium atom (Li) changes into a lithium ion (Li⁺).

Statement	Tick (✓)
A lithium atom loses a neutron.	
A lithium atom loses an electron.	
A lithium atom loses a proton.	

(1 mark)

6 (b) (iii) The diagram shows the electronic structure of a nitrogen atom.

Which diagram, **A**, **B** or **C**, represents the electronic structure of a nitride ion (N^{3-}) ? Write your answer in the box

Write your answer in the box.

7 Sodium thiosulfate solution reacts with hydrochloric acid. As the reaction takes place the solution slowly turns cloudy.

The diagram shows a method of measuring the rate of this reaction.

7

Turn over

8	(b)	(iii)	Calculate the mass of chlorine in a 20g tablet of calcium hypochlorite.
			Mass of chlorine = g (1 mark)
8	(c)	Wast such retur A me equa	te water from some industrial processes sometimes contains harmful metal ions, as chromium ions. These ions must be removed from the water before it can be ned to a river. ethod of removing chromium ions (Cr^{3+}) from water is represented by this tion.
			$Cr^{3+}(aq) + 3OH^{-}(aq) \rightarrow Cr(OH)_{3}(s)$
8	(c)	(i)	What type of substance would be added to the water to provide the OH ⁻ ions?
			(1 mark)
8	(c)	(ii)	A <i>precipitate</i> is formed in this reaction.
_			What is a <i>precipitate</i> ?
			(1 mark)
8	(c)	(iii)	What method could be used to separate the precipitate from the solution?
			(1 mark)
			END OF QUESTIONS

Data Sheet

1. Reactivity Series of Metals	Potassium Sodium Calcium Magnesium Aluminium <i>Carbon</i> Zinc Iron Tin Lead <i>Hydrogen</i> Copper Silver Gold Platinum	most reactive least reactive	

(elements in italics, though non-metals, have been included for comparison)

2. Formulae of Some Common	Positive ions		Negative ions		
lons	Name	Formula	Name	Formula	
	Hydrogen	H^+	Chloride	Cl ⁻	
	Sodium	Na ⁺	Bromide	Br ⁻	
	Silver	Ag^+	Fluoride	F^-	
	Potassium	K^+	Iodide	Ι-	
	Lithium	Li ⁺	Hydroxide	OH^-	
	Ammonium	$\mathrm{NH_4}^+$	Nitrate	NO_3^-	
	Barium	Ba ²⁺	Oxide	O ^{2–}	
	Calcium	Ca ²⁺	Sulfide	S ²⁻	
	Copper(II)	Cu ²⁺	Sulfate	SO_4^{2-}	
	Magnesium	Mg^{2+}	Carbonate	CO3 ²⁻	
	Zinc	Zn^{2+}			
	Lead	Pb ²⁺			
	Iron(II)	Fe ²⁺			
	Iron(III)	Fe ³⁺			
	Aluminium	A1 ³⁺			

0	$\frac{4}{He}$	20 Ne	neon 10	40 Ar	argon 18	84 Kr	krypton 36	131 Xe	xenon 54	[222] Rn	radon 86	been		
~		19 F	fluorine 9	35.5 CI	chlorine 17	80 Br	bromine 35	127 I	iodine 53	$\begin{bmatrix} 210 \end{bmatrix}$ At	astatine 85	116 have	cated	
9		0	oxygen 8	32 S	sulfur 16	79 Se	selenium 34	128 Te	tellurium 52	[209] Po	polonium 84	s 112 - 1	authenti	
S		$\frac{1}{4}$ N	nitrogen 7	31 P	phosphorus 15	75 As	arsenic 33	122 Sb	antimony 51	209 Bi	bismuth 83	number	not fully	
4		C ¹²	carbon 6	28 Si	silicon 14	73 Ge	germanium 32	119 Sn	tin 50	207 Pb	lead 82	n atomic	ted but 1	-
e		n ⊒	boron 5	27 Al	aluminium 13	70 Ga	gallium 31	115 In	indium 49	204 TI	thallium 81	ents with	repor	
				_		65 Zn	zinc 30	112 Cd	cadmium 48	201 Hg	mercury 80	Elem		-
						63.5 Cu	copper 29	108 Ag	silver 47	197 Au	plog 79	[272] Rg	roentgenium 111	1001
						59 Ni	nickel 28	106 Pd	palladium 46	195 Pt	platinum 78	[271] Ds	darmstadtium 110	-
		_				59 Co	cobalt 27	103 Rh	rhodium 45	192 Ir	iridium 77	[268] Mt	meitnerium 109	
	1 H hydrogen 1					56 Fe	iron 26	101 Ru	ruthenium 44	190 Os	osmium 76	[277] Hs	hassium 108	- -
		-		1		55 Mn	manganese 25	[98] Tc	technetium 43	186 Re	rhenium 75	[264] Bh	bohrium 107	
		c mass abol	number			52 Cr	chromium 24	96 Mo	molybdenum 42	184 W	tungsten 74	[266] Sg	seaborgium 106	
	Key	ive atomi omic syn	t (proton)			51 V	vanadium 23	93 Nb	niobium 41	181 Ta	tantalum 73	[262] Db	dubnium 105	C L
		relat	atomic			48 Ti	titanium 22	91 Zr	zirconium 40	178 Hf	hafnium 72	[261] Rf	rutherfordium 104	-
						45 Sc	scandium 21	89 Y	yttrium 39	139 La*	lanthanum 57	[227] Ac*	actinium 89	
7		9 Be	beryllium 4	24 Mg	magnesium 12	40 Ca	calcium 20	88 Sr	strontium 38	137 Ba	barium 56	[226] Ra	radium 88	•
1		7 Li	lithium 3	23 Na	sodium 11	39 K	potassium 19	85 Rb	rubidium 37	133 Cs	caesium 55	[223] Fr	francium 87	Ē

* The Lanthanides (atomic numbers 58 - 71) and the Actinides (atomic numbers 90 - 103) have been omitted. Cu and Cl have not been rounded to the nearest whole number.

3. The Periodic Table of Elements

•