

General Certificate of Secondary Education

Additional Science 4463 / Chemistry 4421

CHY2H Unit 2 Chemistry

Mark Scheme

2008 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

MARK SCHEME

Information to Examiners

1. General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- the typical answer or answers which are expected
- extra information to help the Examiner make his or her judgement and help to delineate what is acceptable or not worthy of credit or, in discursive answers, to give an overview of the area in which a mark or marks may be awarded.

The extra information is aligned to the appropriate answer in the left-hand part of the mark scheme and should only be applied to that item in the mark scheme.

At the beginning of a part of a question a reminder may be given, for example: where consequential marking needs to be considered in a calculation; or the answer may be on the diagram or at a different place on the script.

In general the right hand side of the mark scheme is there to provide those extra details which confuse the main part of the mark scheme yet may be helpful in ensuring that marking is straightforward and consistent.

2. Emboldening

- **2.1** In a list of acceptable answers where more than one mark is available 'any **two** from' is used, with the number of marks emboldened. Each of the following lines is a potential mark.
- **2.2** A bold **and** is used to indicate that both parts of the answer are required to award the mark.
- **2.3** Alternative answers acceptable for a mark are indicated by the use of **or**. (Different terms in the mark scheme are shown by a /; eg allow smooth / free movement.)

3. Marking points

3.1 Marking of lists

This applies to questions requiring a set number of responses, but for which candidates have provided extra responses. The general principle to be followed in such a situation is that 'right + wrong = wrong'.

Each error/contradiction negates each correct response. So, if the number of error/contradictions equals or exceeds the number of marks available for the question, no marks can be awarded.

However, responses considered to be neutral (indicated as * in example 1) are not penalised.

Candidate	Response	Marks awarded
1	4,8	0
2	green, 5	0
3	red*, 5	1
4	red*. 8	0

Example 1: What is the pH of an acidic solution? (1 mark)

Example 2: Name two planets in the solar system. (2 marks)

Candidate	Response	Marks awarded
1	Pluto, Mars, Moon	1
2	Pluto, Sun, Mars,	0
	Moon	

3.2 Use of chemical symbols / formulae

If a candidate writes a chemical symbol / formula instead of a required chemical name, full credit can be given if the symbol / formula is correct and if, in the context of the question, such action is appropriate.

3.3 Marking procedure for calculations

Full marks can be given for a correct numerical answer, as shown in the column 'answers', without any working shown.

However if the answer is incorrect, mark(s) can be gained by correct substitution / working and this is shown in the 'extra information' column;

3.4 Interpretation of 'it'

Answers using the word 'it' should be given credit only if it is clear that the 'it' refers to the correct subject.

3.5 Errors carried forward

Any error in the answers to a structured question should be penalised once only.

Papers should be constructed in such a way that the number of times errors can be carried forward are kept to a minimum. Allowances for errors carried forward are most likely to be restricted to calculation questions and should be shown by the abbreviation e.c.f. in the marking scheme.

3.6 Phonetic spelling

The phonetic spelling of correct scientific terminology should be credited **unless** there is a possible confusion with another technical term.

3.7 Brackets

(....) are used to indicate information which is not essential for the mark to be awarded but is included to help the examiner identify the sense of the answer required.

COMPONENT NAME: Additional Science / Chemistry

STATUS: Final

DATE: June 2008

question	answers	extra information	mark
1 (a)	157	correct answer with or without working	2
		$(2 \times 19 + 119)$ for 1 mark only	
		allow (119 + 19 =) 138 for 1 mark only	
		ignore units	
1 (b)	24.2	accept answers in the range 24 to 24.2038	2
		ignore incorrect rounding after correct answer	
		25 only without working gains 1 mark or	
		38/157 × 100 gains 1 mark or	
		$(19/157 \times 100 =)$ <u>12 to 12.1</u> gains 1 mark	
		allow error carried forward from part(a)	
		$38/(a) \times 100$ gains 2 marks if calculated correctly	
		$(19/138 \times 100 =)$ <u>13.8</u> gains 1 mark	
1 (c)	0.29	accept answers in the range 0.28 to 0.3	1
		allow error carried forward from part (b)	
		(b)/100 \times 1.2 correctly calculated	
		ignore units	

Question 1 continued on the next page...

COMPONENT NAME: Additional Science / Chemistry

STATUS: Final

DATE: June 2008

Question 1 continued...

question	answers	extra information	mark
1(d)	an <u>electron</u>	allow electrons	1
		allow electron shared / lost for 1 mark	
		apply list principle for additional particles	
	is gained owtte	must be linked to electron	1
		accept can hold / take in if in correct context	
		eg it can hold another electron (in its outer shell) = 2 marks	
		it can take an electron (from another atom) = 2 marks	
		ignore reference to fluoride ions	
		incorrect number of electrons gained does not gain the second mark	
Total			7

COMPONENT NAME: Additional Science / Chemistry

STATUS: Final

DATE: June 2008

question	answers	extra information	mark
2 (a)	(propanone) has a low(er) boiling point	or water has a high(er) boiling point or water evaporates slow(er)	1
	or (propanone) evaporates fast(er)	allow propane / solution / it	
	owne	allow evaporates at lower temperature or boils quicker	
		ignore density / reactivity / melting point	
2 (b)(i)	0.29	ignore + or –	1
		ignore units	
2 (b)(ii)	any two sensible suggestions eg:		2
	• weighing error	accept human error or inaccurate measurements	
	• (copper) lost during washing owtte	allow different washing of electrodes	
	• (copper) lost during electrolysis / reaction owtte		
	• electrodes not completely dry		
	• impurities in the electrode		
	• copper falling off when removing electrode / copper from cell		
		ignore timing errors	
		ignore 'fair test'	
		ignore sludge	
		ignore gases produced	

Question 2 continued on next page...

COMPONENT NAME: Additional Science / Chemistry

STATUS: Final

DATE: June 2008

Question 2 continued...

question	answers	extra information	mark
2 (c)	any four from:		4
	• impure copper is anode / positive (electrode)		
	• pure copper is cathode / negative (electrode)		
	• copper sulfate solution or any soluble copper salt in solution		
	 copper loses electrons or copper is oxidised copper forms positive ions / particles 	$\begin{cases} \text{as alternative to these two points} \\ Cu \rightarrow Cu^{2+} + 2e^{-} = 2 \text{ marks} \end{cases}$	
	• copper gains electrons or copper reduced at <u>negative electrode</u>	or $Cu^{2+} + 2e^- \rightarrow Cu$ at <u>negative</u> <u>electrode</u>	
	• copper attracts to / collects at <u>negative electrode</u>		
	• sludge / impurities collect at the bottom owtte	allow sludge left behind or sludge left in solution or impurities separated from copper	
	• impurities not attracted to electrode	ignore get rid of impurities	
Total			8

COMPONENT NAME: Additional Science / Chemistry

STATUS: Final

question	answers	extra information	mark
3 (a)(i)	sulfuric	accept <u>H₂SO₄</u>	1
		accept sulphuric	
		allow phonetic spellings	
3 (a)(ii)	$CuO + H_2SO_4 \rightarrow CuSO_4 + H_2O$		2
		1 mark for reactants	
		1 mark for products	
		ignore state symbols	
		max 1 mark for incorrect balancing	
3 (b)	any two from:		2
	• particles gain energy or particles have more energy	allow have more activation energy	
	• particles move faster	allow they collide faster / quicker	
		ignore move / vibrate more	
	• collide more often	allow more collisions	
	• collide more energetically		
	• more of the collisions are successful or more particles have the activation energy		
		NB more successful collisions alone = 1 mark	
		if particles are identified as electrons = max 1 mark	
Total			5

COMPONENT NAME: Additional Science / Chemistry

STATUS: Final

question	answers	extra information	mark
4		max 3 if ionic / metallic bonding mentioned	
		ignore electrostatic	
		ignore molecules / intermolecular forces	
	any four points from:		4
	• high melting point owtte	ignore boiling point	
	• <u>many</u> or <u>all</u> atoms joined together		
	 each silicon (atom) joined to four oxygen (atoms) or each oxygen joined to two silicon 		
	• <u>covalent</u> (bonds)		
	 many bonds would need to be broken 		
	• strong bonds	allow hard to break bonds	
	 lot of energy / heat needed to break bonds 	allow high temperature needed to break bonds	
	• giant / macromolecular / lattice / diamond structure		
	• unreactive	allow doesn't react with materials within furnace = 1 mark	
	• rigid / hard structure		
	• no free electrons		
	• poor conductor of heat	giant covalent structure = 2 marks	
Total			4

COMPONENT NAME: Additional Science / Chemistry

STATUS: Final

question		answ	vers		extra information	mark
5 (a)	Pb	Cl	С	Ο		
	<u>76</u>	<u>13</u>	<u>2.2</u>	<u>8.8</u>	1 mark for dividing one mass by A_r	1
	207	35.5	12	16	allow upside down ratio to lose this mark only	
	= 0.367	= 0.366	= 0.183	= 0.55	1 mark for one correct proportion – accept to one d.p. or rounded up to 1 d.p.	1
					1 mark for all four correct proportions correctly rounded	1
	2 or Pb2Cl	2 2 CO 3	1	3	1 mark for correctly written formula or correct whole number ratio	1
					correct formula without working gets only 1 mark.	
					e.c.f. can be allowed from incorrect proportions to formula or ratio	
5 (b)(i)	any one	from:				1
	• NaO	H ⁻ / sodiur <u>ed</u> / an alka	n hydroxi ali	de is	not just alkali is formed	
	• hydro	oxide / OH	ions <u>forr</u>	ned	increase number of hydroxide / OH ⁻ ions	
5 (b)(ii)	filter				accept centrifuge / decant	1
					allow filter and evaporate	
					ignore further steps unless contradictory	
Total						6

COMPONENT NAME: Additional Science / Chemistry

STATUS: Final

DATE: June 2008

question	answers	extra information	mark
6 (a)	nanoparticles / they are small(er)	accept 1–100 nm or a few atoms in size	1
	so can easily pass through pores / skin / cell / membranes / arteries / veins / capillaries / into blood stream owtte	must be a comparative statement can be inferred from small <u>er</u> particles allow absorbed for pass through	1
6 (b)	any one from:		1
	• may be toxic (to cells / specific cells)	allow may harm / damage / kill cells / organs / tissues or may cause cancer	
	 to ensure safety or reduce risk or risk of litigation 	allow may cause allergies / side effects	
		ignore harmful / dangerous unqualified eg harmful to body / people	
	nanoparticles may have different properties		
	• to see if they pass into the body		

Question 6 continued on the next page...

COMPONENT NAME: Additional Science / Chemistry

STATUS: Final

DATE: June 2008

Question 6 continued...

question	answers	extra information	mark
6(c)	any two sensible ideas from eg:		2
	 testing is expensive or testing costs money 	allow it costs money	
	• testing is time consuming	Ignore Intigation	
	• don't see any reason to test since normal sized particles (of titanium oxide) do not cause harm	accept normal sun cream does not cause harm owtte	
	• don't want to risk not producing a popular product (owtte)	eg if unsafe will have to stop production or have to remove product if toxic	
	 testing process / unfavourable results might cause alarm / reduce sales / reduce profit (less money) 		
	• do not want to be seen doing animal testing		
Total			5

COMPONENT NAME: Additional Science / Chemistry

STATUS: Final

question	answers	extra information	mark
7(a)	2.8.3 on diagram as Xs / dots or e	accept paired or unpaired	1
7 (b)	 any two from: electrons in highest energy level or electrons in outer shell electrons are delocalised or sea of electrons electrons are free or electrons move around / flow electrons carry charge / current 	ignore carry electricity	2
Total			3

COMPONENT NAME: Additional Science / Chemistry

STATUS: Final

DATE: June 2008

question	answers	extra information	mark
8 (a)	25.4(%)	correct answer with or without working	2
		accept 25(%)	
		accept 25.433(%)	
		allow 26(%) for 1 mark	
		if incorrect answer 1 mark for identification of 44 as M_r of useful product	
		or 173 as total $M_{\rm r}$ of reactants / products	
8 (b)		ignore references to energy / cheaper / profit / cost / efficient	
	any two sensible ideas from eg:		2
	• no / less waste		
	 less materials / reactants needed / used 		
	• fewer / no environmental problems or less / no pollution		
	 better for sustainable development / resources running out 		
	• more useful use of atoms		
	 less purification / separation of products owtte 		

Question 8 continued on next page...

COMPONENT NAME: Additional Science / Chemistry

STATUS: Final

DATE: June 2008

Question 8 continued...

question	answers	extra information	mark
8 (c)	increase yield	owtte	1
	more (gaseous) reactant molecule than (gaseous) product molecule owtte	accept more molecules on left hand side or converse accept Le Chatelier based answers for second mark ignore rate of reaction	1
8 (d)	reduce yield or	allow no yield	1
	less product owtte		
Total			7