

General Certificate of Secondary Education

January 2008

PHYSICS
 Unit Physics P3

PHY3F
 F

Foundation Tier

Monday 21 January 20081.30 pm to 2.15 pm

For this paper you must have:

- a pencil and a ruler.

You may use a calculator.

Time allowed: 45 minutes

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer the questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The maximum mark for this paper is 45 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

Advice

- In all calculations, show clearly how you work out your answer.
-

Answer all questions in the spaces provided.

1 (a) The diagram shows a rectangle made out of a sheet of cardboard.

Draw an \mathbf{X} on the diagram so that the centre of the \mathbf{X} is at the centre of mass of the rectangle.
(b) The drawing shows a car tyre.

(i) Where is the centre of mass of the tyre?
\qquad
(ii) Explain your answer to (b)(i).
\qquad
\qquad

2 (a) The diagram shows a motorist looking into her driving mirror.
(i) Mark on the diagram:

I to show the incident ray
\mathbf{r} to show the angle of reflection.

(ii) Name the dashed line shown in the diagram.
\qquad
(b) List \mathbf{A} gives the names of two types of mirror. List \mathbf{B} shows how three types of mirror are represented in diagrams.

Draw a line from each type of mirror in list \mathbf{A} to the correct mirror in list \mathbf{B}.

List A

List B
E

(2 marks)

3 The diagram shows two children playing with a toy called a swing ball. The ball is joined to a pole by a strong string. The children hit the ball so that it goes round in a circular path.

(a) Which force causes the ball to move in a circle?

Draw a ring around your answer.
air resistance tension weight
(b) Complete the sentences by ticking (\checkmark) the correct ending.
(i) The force needed to make the ball move in a circular path is larger if the speed of the ball is increased. \square
the speed of the ball is decreased. \square
the string is made longer.

(ii) The continuous acceleration of a ball moving in a circular path changes the speed of the ball. \square
the direction of the ball. \square
the weight of the ball. \square
(c) Which of the following words is used to describe any force that causes an object to move in a circular path?

Draw a ring around your answer.
centripetal frictional gravitational universal

Turn over for the next question

4 The diagram shows two satellites orbiting the Earth.

These satellites have the same mass.
(a) Complete the following sentences by drawing a ring around the correct words in each box.

(i) The time taken for one orbit by satellite \mathbf{X} is | less than |
| :--- |
| the same as |
| more than | the time for one orbit by satellite \mathbf{Y}.

(ii) The force between the Earth and satellite \mathbf{X} is $\begin{aligned} & \text { less than } \\ & \text { the same as } \\ & \text { more than }\end{aligned}$ the force between the Earth and satellite \mathbf{Y}.
(b) A communication satellite is put into a geostationary orbit.

What is a geostationary orbit?
\qquad
\qquad
\qquad
\qquad
(c) A company plans to launch a satellite to monitor the weather.

Which type of orbit is usually used for this purpose?
Draw a ring around your answer.
geostationary high polar low polar

5 Two students collect data from the Internet about planets in the Solar System.
The table shows the data that they collect about the first six planets.

Name of planet	Distance from the Sun in arbitrary units	Time for one orbit of the Sun in years	Mean surface temperature of the planet in ${ }^{\circ} \mathbf{C}$
Mercury	0.4	0.2	+125
Venus	0.7	0.6	+465
Earth	1.0	1.0	+22
Mars	1.5	1.9	-48
Jupiter	5.2	11.9	
Saturn	9.6	29.5	-180

(a) One student says that the mean surface temperature of planets gets less the further they are from the Sun. The other student agrees but says that one planet does not fit the pattern.

Which planet does not fit the pattern?
\qquad
(b) Estimate a value for the mean surface temperature of Jupiter.

Mean surface temperature of Jupiter $=$
(c) Use words from the box to complete the following conclusion reached using the data in the table.

You can use the words once, more than once or not at all.

decreases	increases	stays the same

As the distance from the Sun to a planet \qquad the time taken for the planet to orbit the Sun \qquad .. .
(d) Hundreds of years ago, some scientists thought that Mars was a hot planet because it has a reddish colour.

Which one of the following statements gives the reason why scientists no longer think this?

Put a tick (\checkmark) in the box next to your answer.

Hundreds of years ago, scientists got everything wrong. \square

Today's scientists have new evidence about Mars. \square

All scientific ideas change every one hundred years. \square

Turn over for the next question

6 When a conductor carrying an electric current is placed in a magnetic field a force may act on it.

(a) State two ways in which this force can be increased.

1
2
(b) State two ways in which this force can be made to act in the opposite direction.

1
2 \qquad
(c) In what circumstance will no force act on a conductor carrying an electric current and in a magnetic field?
\qquad
\qquad

7 The ray diagram shows the position and size of the image, \mathbf{I}, of an object, \mathbf{O}, formed by a lens, \mathbf{L}.

(a) What type of lens is shown in the ray diagram?
\qquad
(b) Name the point labelled \mathbf{P}.
\qquad
(c) The ray diagram has been drawn to scale.

Use the equation in the box to calculate the magnification.

$$
\text { magnification }=\frac{\text { image height }}{\text { object height }}
$$

Show clearly how you work out your answer.
\qquad
\qquad

$$
\begin{array}{r}
\text { Magnification }=\text {.............................. } \\
(2 \text { marks })
\end{array}
$$

(d) How can you tell from this ray diagram that the image is a real image?
\qquad
\qquad

8 A spanner gives a turning effect to undo a nut.
(a) Complete the sentence.

The turning effect of a force is called the \qquad of the force. (1 mark)
(b) The diagram shows a spanner being used.

Use the equation in the box to calculate the spanner's turning effect in newton metres.

$$
\text { turning effect }=\text { force } \times \quad \begin{gathered}
\text { perpendicular distance from the line of action } \\
\text { of the force to the axis of rotation }
\end{gathered}
$$

Show clearly how you work out your answer.
\qquad
\qquad
Turning effect $=$ Nm (2 marks)
(c) Give two ways in which you can increase the spanner's turning effect.

1 \qquad

2 \qquad
(2 marks)

9 When sound waves reach a material, some of the energy of the sound is reflected and some is transmitted through the material.
(a) Complete the sentence.

Sound waves are caused by \qquad ..
(b) The graphs $\mathbf{J}, \mathbf{K}, \mathbf{L}$ and \mathbf{M} represent the sound energy reflected from a surface.

The graphs are all drawn to the same scale.
Which graph shows the greatest total sound energy output from the surface?

Graph \qquad
(c) The proportion of the sound energy which is reflected or transmitted depends on the material which receives the sound.

A student investigates different materials.
The diagram shows how a student sets up her equipment.
(i) Using a pencil and ruler to draw on the diagram, show how microphone \mathbf{X} receives reflected sound.

Loudspeaker

Microphone \mathbf{X}
(ii) The student tests four materials. Each sheet of material is 1 mm thick. This has been glued onto a block of expanded polystyrene.

Why does the student use the same size of expanded polystyrene block and the same sound level for each test?
\qquad
\qquad
(iii) The table shows the readings for the sound level transmitted to microphone \mathbf{Y}.

Sound level from loudspeaker in arbitrary units	Surface material	Sound level transmitted to microphone Y in arbitrary units
60	paper	39
60	plaster	18
60	cloth	31
60	wood	15

[A] Which surface material transmits the smallest proportion of the sound?
\qquad
[B] What proportion is this?
\qquad
(d) People living in a flat have very noisy neighbours who are always playing loud music.

Suggest one practical idea to reduce the amount of noise transmitted into the flat through the walls and explain how your idea will work.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(2 marks)

There are no questions printed on this page

