Centre No.			Paper Reference				Surname	Initial(s)			
Candidate No.			6	6	6	5	/	0	1	Signature	

6665/01

Edexcel GCE

Core Mathematics C3

Advanced

Thursday 17 January 2008 – Afternoon

Time: 1 hour 30 minutes

Materials	required	for	examination
-----------	----------	-----	-------------

Mathematical Formulae (Green)

Items included with question papers

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions. Write your answers in the spaces provided in this question paper. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

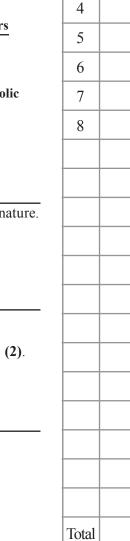
A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 8 questions in this question paper. The total mark for this paper is 75.

There are 24 pages in this question paper. Any blank pages are indicated.


Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy.

Printer's Log. No. H26315RB

Examiner's use only

Team Leader's use only

1

3

W850/R6665/57570 3/3/3/3/3/3/3/2/2/

Leave
hlank

Given that $\frac{2x^4 - 3x^2 + x + 1}{(x^2 - 1)} = (ax^2 + bx + c) + \frac{dx + e}{(x^2 - 1)},$	
find the values of the constants a , b , c , d and e .	(4)
	()

Question 1 continued	Leave blank
	Q1
(Total 4 marks)	

Leave	
blank	

2.	A curve C has equation
----	------------------------

$$y = e^{2x} \tan x$$
, $x \neq (2n+1)\frac{\pi}{2}$.

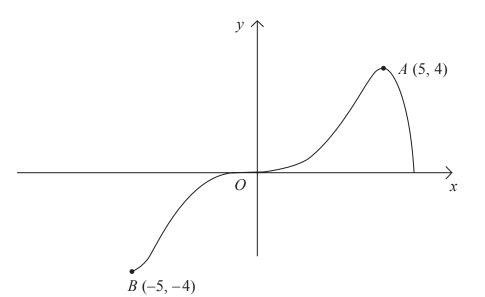
(a) Show that the turning points on C occur where $\tan x = -1$.

(6)

(2)

()

Question 2 continued	L b
	Q2


Loone	
Leave	
blonk	

•	$f(x) = \ln(x+2) - x + 1, x > -2, x \in \mathbb{R}$.	
	(a) Show that there is a root of $f(x) = 0$ in the interval $2 < x < 3$.	(2)
ı	(b) Use the iterative formula	(-)
	$x_{n+1} = \ln(x_n + 2) + 1, \ x_0 = 2.5$	
	to calculate the values of x_1, x_2 and x_3 giving your answers to 5 decimal places.	(3)
((c) Show that $x = 2.505$ is a root of $f(x) = 0$ correct to 3 decimal places.	(2)
	(c) Show that $x = 2.505$ is a root of $f(x) = 0$ correct to 3 decimal places.	(2

6

Question 3 continued	Leav blank
	Q3

4.

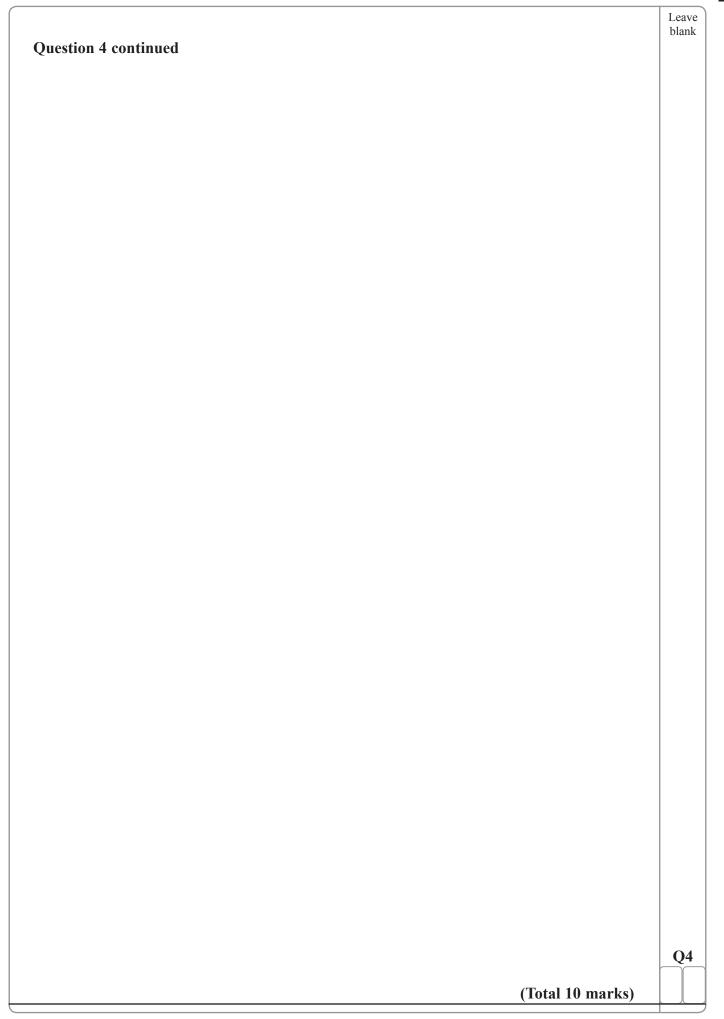
Leave blank

Figure 1

Figure 1 shows a sketch of the curve with equation y = f(x). The curve passes through the origin O and the points A(5, 4) and B(-5, -4).

In separate diagrams, sketch the graph with equation

(a)
$$y = |\mathbf{f}(x)|$$
, (3)


(b)
$$y = f(|x|)$$
, (3)

(c)
$$y = 2f(x+1)$$
. (4)

On each sketch, show the coordinates of the points corresponding to A and B.

	Leave blank
Question 4 continued	

Question 4 continued	Leave blank

The madicactive decay of a material is a insent.	
5. The radioactive decay of a substance is given by	
$R = 1000e^{-ct}, t \geqslant 0.$	
where R is the number of atoms at time t years and c is a positive constant.	
(a) Find the number of atoms when the substance started to decay.	(1)
It takes 5730 years for half of the substance to decay.	
(b) Find the value of c to 3 significant figures.	(4)
(c) Calculate the number of atoms that will be left when $t = 22 920$.	(2)
(d) In the space provided on page 13, sketch the graph of R against t .	(2)

Question 5 continued	Leave blank
	Q5
(Total 9 marks)	

Leave	
blank	

6. (a) Use the double angle formulae and the identity

$$\cos(A+B) \equiv \cos A \cos B - \sin A \sin B$$

to obtain an expression for $\cos 3x$ in terms of powers of $\cos x$ only.

(4)

(b) (i) Prove that

$$\frac{\cos x}{1+\sin x} + \frac{1+\sin x}{\cos x} \equiv 2\sec x, \qquad x \neq (2n+1)\frac{\pi}{2}.$$

(4)

(ii) Hence find, for $0 < x < 2\pi$, all the solutions of

$$\frac{\cos x}{1+\sin x} + \frac{1+\sin x}{\cos x} = 4.$$

(3)

Question 6 continued	Leave blank

Question 6 continued	bl

uestion 6 continued	Lo bl
destion o continued	

7.	A curve C has equation	Lea bla
	$y = 3\sin 2x + 4\cos 2x, \ -\pi \leqslant x \leqslant \pi.$	
	The point $A(0, 4)$ lies on C .	
	(a) Find an equation of the normal to the curve C at A .	(5)
	(b) Express y in the form $R\sin(2x+\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$.	
	Give the value of α to 3 significant figures.	(4)
	(c) Find the coordinates of the points of intersection of the curve <i>C</i> with the <i>x</i> -axis. Give your answers to 2 decimal places.	(4)

Question 7 continued	Leave blank

Question 7 continued	

	Lea blaı
Question 7 continued	

8. The functions f and g are defined by

$$f: x \mapsto 1 - 2x^3, \ x \in \mathbb{R}$$

$$g: x \mapsto \frac{3}{x} - 4, \ x > 0, \ x \in \mathbb{R}$$

(a) Find the inverse function f^{-1} .

(2)

(b) Show that the composite function gf is

$$gf: x \mapsto \frac{8x^3 - 1}{1 - 2x^3}.$$

(4)

(c) Solve gf(x) = 0.

(2)

(d) Use calculus to find the coordinates of the stationary point on the graph of y = gf(x).

(5)

	Leave blank
Question 8 continued	

Question 8 continued				Lea blar
				Q
			(Total 13 marks)	
	END	TOTAL FOR I	PAPER: 75 MARKS	