

## Mark Scheme (Final) Summer 2007

GCE

GCE Mathematics (6665/01)



## June 2007 6665 Core Mathematics C3 Mark Scheme

| Question<br>Number | Scheme                                                                                                                                                                  | Marks        |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| <b>1.</b> (a)      | $\ln 3x = \ln 6$ or $\ln x = \ln \left(\frac{6}{3}\right)$ or $\ln \left(\frac{3x}{6}\right) = 0$                                                                       | M1           |
|                    | x = 2 (only this answer)                                                                                                                                                | A1 (cso) (2) |
| ( <i>b</i> )       | $(e^x)^2 - 4e^x + 3 = 0$ (any 3 term form)                                                                                                                              | M1           |
|                    | $(e^x - 3)(e^x - 1) = 0$                                                                                                                                                |              |
|                    | $e^x = 3$ or $e^x = 1$ Solving quadratic                                                                                                                                | M1 dep       |
|                    | $(e^{x})^{2} - 4e^{x} + 3 = 0$ (any 3 term form)<br>$(e^{x} - 3)(e^{x} - 1) = 0$<br>$e^{x} = 3$ or $e^{x} = 1$ Solving quadratic<br>$x = \ln 3$ , $x = 0$ (or $\ln 1$ ) | M1 A1 (4)    |
|                    |                                                                                                                                                                         | (6 marks)    |

Notes: (a) Answer x = 2 with no working or no incorrect working seen: M1A1

Note: 
$$x = 2$$
 from  $\ln x = \frac{\ln 6}{\ln 3} = \ln 2$  M0A0

$$\ln x = \ln 6 - \ln 3 \implies x = e^{(\ln 6 - \ln 3)}$$
 allow M1,  $x = 2$  (no wrong working) A1

(b)  $1^{st}$  M1 for attempting to multiply through by  $e^x$ : Allow y, X, even x, for  $e^x$   $2^{nd}$  M1 is for solving quadratic as far as getting two values for  $e^x$  or y or X etc  $3^{rd}$  M1 is for converting their answer(s) of the form  $e^x = k$  to x = lnk (must be exact) A1 is for ln3 and ln1 or 0 (Both required and no further solutions)

| <b>2.</b> (a) | $2x^2 + 3x - 2 = (2x - 1)(x + 2)$ at any stage                                                                      | B1         |
|---------------|---------------------------------------------------------------------------------------------------------------------|------------|
|               | $f(x) = \frac{(2x+3)(2x-1)-(9+2x)}{(2x-1)(x+2)}$ f.t. on error in denominator factors (need not be single fraction) | M1, A1√    |
|               | Simplifying numerator to quadratic form                                                                             | M1         |
|               | Correct <b>numerator</b> $= \frac{4x^2 + 2x - 12}{[(2x-1)(x+2)]}$                                                   | A1         |
|               | Factorising numerator, with a denominator $=\frac{2(2x-3)(x+2)}{(2x-1)(x+2)}$ o.e.                                  | M1         |
|               | $=\frac{4x-6}{2x-1} \qquad (\clubsuit)$                                                                             | A1 cso (7) |
| Alt.(a)       | $2x^2 + 3x - 2 = (2x - 1)(x + 2)$ at any stage B1                                                                   |            |
|               | $f(x) = \frac{(2x+3)(2x^2+3x-2) - (9+2x)(x+2)}{(x+2)(2x^2+3x-2)}$ M1A1 f.t.                                         |            |
|               | $=\frac{4x^3+10x^2-8x-24}{(x+2)(2x^2+3x-2)}$                                                                        |            |
|               | $= \frac{2(x+2)(2x^2+x-6)}{(x+2)(2x^2+3x-2)} \text{ or } \frac{2(2x-3)(x^2+4x+4)}{(x+2)(2x^2+3x+2)} \text{ o.e.}$   |            |
|               | Any one linear factor $\times$ quadratic factor in <b>numerator</b> M1, A1                                          |            |
|               | $= \frac{2(x+2)(x+2)(2x-3)}{(x+2)(2x^2+3x-2)}  \text{o.e.} $ M1                                                     |            |
|               | $=\frac{2(2x-3)}{2x-1} \qquad \frac{4x-6}{2x-1} \qquad (*)$                                                         |            |
| ( <i>b</i> )  | Complete method for f'(x); e.g $f'(x) = \frac{(2x-1)\times 4 - (4x-6)\times 2}{(2x-1)^2}$ o.e                       | M1 A1      |
|               | $= \frac{8}{(2x-1)^2}  \text{or}  8(2x-1)^{-2}$                                                                     | A1 (3)     |
|               | Not treating f <sup>-1</sup> (for f') as misread                                                                    | (10 marks) |

Notes:

(a) 1<sup>st</sup> M1 in either version is for correct method
$$1^{\text{st}} \text{ A1 Allow } \frac{2x+3(2x-1)-(9+2x)}{(2x-1)(x+2)} \text{ or } \frac{(2x+3)(2x-1)-9+2x}{(2x-1)(x+2)} \text{ or } \frac{2x+3(2x-1)-9+2x}{(2x-1)(x+2)}$$
 (fractions)

 $2^{nd}$  M1 in (main a) is for forming 3 term quadratic in **numerator**  $3^{rd}$  M1 is for factorising their quadratic (usual rules); factor of 2 need not be extracted

(\*) A1 is given answer so is cso

Alt:(a) 3<sup>rd</sup> M1 is for factorising resulting quadratic

(b) SC: For M allow ± given expression or one error in product rule

Alt: Attempt at  $f(x) = 2 - 4(2x - 1)^{-1}$  and diff. M1;  $k(2x - 1)^{-2}$  A1; A1 as above

Accept  $8(4x^2 - 4x + 1)^{-1}$ .

Differentiating original function – mark as scheme.

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                        | Marks                           |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| <b>3.</b> (a)      | $\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 \mathrm{e}^x + 2x \mathrm{e}^x$                                                                                                                                                                                                        | M1,A1,A1 (3)                    |
| ( <i>b</i> )       | If $\frac{dy}{dx} = 0$ , $e^x(x^2 + 2x) = 0$ setting $(a) = 0$                                                                                                                                                                                                                | M1                              |
| (c)                | If $\frac{dy}{dx} = 0$ , $e^{x}(x^{2} + 2x) = 0$ setting $(a) = 0$<br>$[e^{x} \neq 0]$ $x(x + 2) = 0$<br>(x = 0) $x = -2x = 0, y = 0 and x = -2, y = 4e^{-2} (= 0.54) \frac{d^{2}y}{dx^{2}} = x^{2}e^{x} + 2xe^{x} + 2xe^{x} + 2e^{x} \left[ = (x^{2} + 4x + 2)e^{x} \right]$ | A1 $A1 \sqrt{3}$ (3) M1, A1 (2) |
| ( <i>d</i> )       | $x = 0$ , $\frac{d^2 y}{dx^2} > 0$ (=2) $x = -2$ , $\frac{d^2 y}{dx^2} < 0$ [ = $-2e^{-2}$ ( = $-0.270$ )] M1: Evaluate, or state sign of, candidate's (c) for at least one of candidate's $x$ value(s) from (b)                                                              | M1                              |
|                    | ∴minimum ∴maximum                                                                                                                                                                                                                                                             | A1 (cso) (2)                    |
| Alt.(d)            | For M1: Evaluate, or state sign of, $\frac{dy}{dx}$ at two appropriate values – on either side of at least one of their answers from (b) or Evaluate $y$ at two appropriate values – on either side of at least one of their answers from (b) or Sketch curve                 |                                 |
|                    |                                                                                                                                                                                                                                                                               | (10 marks)                      |

Notes: (a) M for attempt at f(x)g'(x) + f'(x)g(x)

1<sup>st</sup> A1 for one correct, 2<sup>nd</sup> A1 for the other correct.

Note that  $x^2e^x$  on its own scores no marks

- (b)  $1^{st}$  A1 (x = 0) may be omitted, but for  $2^{nd}$  A1 both sets of coordinates needed; f.t only on candidate's x = -2
- (c) M1 requires complete method for candidate's (a), result may be unsimplified for A1
- (d) A1 is cso; x = 0, min, and x = -2, max and no incorrect working seen, or (in alternative) sign of  $\frac{dy}{dx}$  either side correct, or values of y appropriate to t.p.

Need only consider the quadratic, as may assume  $e^x > 0$ .

If all marks gained in (a) and (c), and correct x values, give M1A1 for correct statements with no working

| Question<br>Number | Scheme                                                                                                                                                                                                              |                                                                           | Mark         | s     |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------|-------|
| <b>4.</b> (a)      | $x^{2}(3-x)-1=0$ o.e. (e.g. $x^{2}(-x+3)=1$ )                                                                                                                                                                       |                                                                           | M1           |       |
|                    | $x = \sqrt{\frac{1}{3-x}} \tag{*}$                                                                                                                                                                                  |                                                                           | A1 (cso)     | (2)   |
|                    | Note( $*$ ), answer is given: need to see appropriate working and A1 is cso [Reverse process: Squaring and non-fractional equation M1, form f( $x$ ) A1]                                                            |                                                                           |              |       |
| (b)                | $x_2 = 0.6455$ , $x_3 = 0.6517$ , $x_4 = 0.6526$<br>1 <sup>st</sup> B1 is for one correct, 2 <sup>nd</sup> B1 for other two correct<br>If all three are to greater accuracy, award B0 B1                            |                                                                           | B1; B1       | (2)   |
| (c)                | Choose values in interval (0.6525, 0.6535) or tighter and evaluate both $f(0.6525) = -0.0005$ (372 $f(0.6535) = 0.002$ (101                                                                                         |                                                                           | M1           |       |
|                    | At least one correct "up to bracket", i.e0.0005 or <b>Change of sign,</b> $\therefore x = 0.653$ is a root (correct) to 3 d                                                                                         |                                                                           | A1<br>A1     | (3)   |
|                    | Requires both correct "up to bracket" and conclusion                                                                                                                                                                |                                                                           |              |       |
| Alt (i)            | Continued iterations at least as far as $x_6$                                                                                                                                                                       | M1                                                                        | (7 ma        | arks) |
| 7 111 (1)          | $x_5 = 0.65268$ , $x_6 = 0.6527$ , $x_{7} = \dots$ two correct to at 1                                                                                                                                              | least 4 s.f. A1                                                           |              |       |
| Alt (ii)           | Conclusion: Two values correct to 4 d.p., so $0.653$ is root to 3 d.p. A1 If use $g(0.6525) = 0.6527>0.6525$ and $g(0.6535) = 0.6528<0.6535$ M1A1 Conclusion: Both results correct, so $0.653$ is root to 3 d.p. A1 |                                                                           |              |       |
| 5. (a)             | Finding g(4) = k and f(k) = or fg(x) = $\ln \left( \frac{4}{x-3} \right)$                                                                                                                                           | /                                                                         | M1           | (2)   |
| (b)                | $[f(2) = \ln(2x2 - 1) $ $fg(4) = \ln(4 - 1)]$<br>$y = \ln(2x - 1) $ $\Rightarrow e^y = 2x - 1 $ or $e^x = 2y - 1$                                                                                                   | $= \ln 3$                                                                 | A1<br>M1, A1 | (2)   |
|                    | $f^{-1}(x) = \frac{1}{2}(e^x + 1) \qquad \text{Allow } y = \frac{1}{2}(e^x + 1)$                                                                                                                                    |                                                                           | A1           |       |
|                    | Domain $x \in \Re$ [Allow $\Re$ , all reals, $(-\infty, \infty)$                                                                                                                                                    | ] independent                                                             | B1           | (4)   |
| (c)                | y                                                                                                                                                                                                                   | Shape, and <i>x</i> -axis should appear to be asymptote                   | B1           |       |
|                    | $\frac{2}{3}$ $x = 3$                                                                                                                                                                                               | <b>Equation</b> $x = 3$ <b>needed,</b> may see in diagram (ignore others) | B1 ind.      |       |
|                    | O $3$ $x$                                                                                                                                                                                                           | Intercept $(0, \frac{2}{3})$ no                                           |              | ,     |
|                    | Z   31                                                                                                                                                                                                              | other; accept $y = \frac{2}{3}$ (0.67) or on graph                        | B1 ind       | (3)   |
| (d)                | (d) $\frac{2}{x-3} = 3 \implies x = 3\frac{2}{3} \text{ or exact equiv.}$ $\frac{2}{x-3} = -3, \implies x = 2\frac{1}{3} \text{ or exact equiv.}$ Note: $2 = 3(x+3) \text{ or } 2 = 3(-x-3) \text{ o.e. is MOAO}$   |                                                                           | B1           |       |
|                    |                                                                                                                                                                                                                     |                                                                           | M1, A1       | (3)   |
| Alt:               |                                                                                                                                                                                                                     |                                                                           | (12 ma       | arks) |
|                    | Anthomatics C2                                                                                                                                                                                                      |                                                                           | ` `          |       |

| 6. | (a)          | Complete method for R: e.g. $R\cos\alpha = 3$ , $R\sin\alpha = 2$ , $R = \sqrt{(3^2 + 2^2)}$                   | M1         |
|----|--------------|----------------------------------------------------------------------------------------------------------------|------------|
|    |              | $R = \sqrt{13}$ or 3.61 (or more accurate)                                                                     | A1         |
|    |              | Complete method for $\tan \alpha = \frac{2}{3}$ [Allow $\tan \alpha = \frac{3}{2}$ ]                           | M1         |
|    |              | $\alpha = 0.588$ (Allow 33.7°)                                                                                 | A1 (4)     |
|    | ( <i>b</i> ) | Greatest value = $\left(\sqrt{13}\right)^4 = 169$                                                              | M1, A1 (2) |
|    | (c)          | $\sin(x+0.588) = \frac{1}{\sqrt{13}}$ (= 0.27735) $\sin(x + \text{their } \alpha) = \frac{1}{\text{their } R}$ | M1         |
|    |              | (x + 0.588) = 0.281(03) or 16.1°                                                                               | A1         |
|    |              | $(x + 0.588)$ = $\pi - 0.28103$<br>Must be $\pi$ -their 0.281 or 180° - their 16.1°                            | M1         |
|    |              | or $(x + 0.588)$ = $2\pi + 0.28103$<br>Must be $2\pi +$ their 0.281 or $360^{\circ} +$ their $16.1^{\circ}$    | M1         |
|    |              | x = 2.273 or $x = 5.976$ (awrt) Both (radians only)                                                            | A1 (5)     |
|    |              | If 0.281 or 16.1° not seen, correct answers imply this A mark                                                  | (11 marks) |

Notes: (a) 1<sup>st</sup> M1 for correct method for R

 $2^{\text{nd}}$  M1 for correct method for tan  $\alpha$ 

No working at all: M1A1 for  $\sqrt{13}$ , M1A1 for 0.588 or 33.7°.

N.B. Rcos  $\alpha = 2$ , Rsin  $\alpha = 3$  used, can still score M1A1 for R, but loses the A mark for  $\alpha$ .  $\cos \alpha = 3$ ,  $\sin \alpha = 2$ : apply the same marking.

- (b) M1 for realising  $sin(x + \alpha) = \pm 1$ , so finding R<sup>4</sup>.
- (c) Working in mixed degrees/rads: first two marks available Working consistently in degrees: Possible to score first 4 marks [Degree answers, just for reference only, are  $130.2^{\circ}$  and  $342.4^{\circ}$ ] Third M1 can be gained for candidate's 0.281 candidate's  $0.588 + 2\pi$  or equiv. in degrees One of the answers correct in radians or degrees implies the corresponding M mark.
- Alt: (c) (i) Squaring to form quadratic in  $\sin x$  or  $\cos x$  M1  $[13\cos^2 x 4\cos x 8 = 0, 13\sin^2 x 6\sin x 3 = 0]$  Correct values for  $\cos x = 0.953...$ , -0.646; or  $\sin x = 0.767$ , 2.27 awrt A1 For any one value of  $\cos x$  or  $\sin x$ , correct method for two values of x M1 x = 2.273 or x = 5.976 (awrt) Both seen anywhere A1 Checking other values (0.307, 4.011) or (0.869, 3.449) and discarding M1
  - (ii) Squaring and forming equation of form  $a \cos 2x + b \sin 2x = c$   $9 \sin^2 x + 4 \cos^2 x + 12 \sin 2x = 1 \Rightarrow 12 \sin 2x + 5 \cos 2x = 11$ Setting up to solve using R formula e.g.  $\sqrt{13} \cos(2x-1.176) = 11$

$$(2x-1.176) = \cos^{-1}\left(\frac{11}{\sqrt{13}}\right) = 0.562(0...$$
 (\alpha)

$$(2x-1.176) = 2\pi - \alpha, \ 2\pi + \alpha, \dots$$
 M1

$$x = 2.273$$
 or  $x = 5.976$  (awrt) Both seen anywhere A1 Checking other values and discarding M1

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                 | Marks            |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 7. (a)             | $\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \sin \theta}$ M1 Use of common denominator to obtain single fraction                                                                             | M1               |
|                    | $= \frac{1}{\cos \theta \sin \theta}$ M1 Use of appropriate trig identity (in this case $\sin^2 \theta + \cos^2 \theta = 1$ )                                                                                                                                          | M1               |
|                    | $= \frac{1}{\frac{1}{2}\sin 2\theta}$ Use of $\sin 2\theta = 2\sin \theta \cos \theta$ $= 2\csc 2\theta  (*)$                                                                                                                                                          | M1<br>A1 cso (4) |
| Alt.(a)            | $\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \tan \theta + \frac{1}{\tan \theta} = \frac{\tan^2 \theta + 1}{\tan \theta}$ M1                                                                                                                   | A1 CSU (4)       |
|                    | $=\frac{\sec^2\theta}{\tan\theta}$ M1                                                                                                                                                                                                                                  |                  |
|                    | $= \frac{1}{\cos \theta \sin \theta} = \frac{1}{\frac{1}{2} \sin 2\theta}$ M1<br>= $2 \csc 2\theta$ (*) (cso) A1                                                                                                                                                       |                  |
| ( <i>b</i> )       | If show two expressions are equal, need conclusion such as QED, tick, true.                                                                                                                                                                                            |                  |
|                    | Shape (May be translated but need to see 4"sections")                                                                                                                                                                                                                  | B1               |
|                    | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                 | B1 dep. (2)      |
| (c)                | $2\csc 2\theta = 3$ $\sin 2\theta = \frac{2}{3}$ Allow $\frac{2}{\sin 2\theta} = 3$ [M1 for equation in $\sin 2\theta$ ]                                                                                                                                               | M1, A1           |
|                    | $(2\theta) = [41.810^{\circ}, 138.189^{\circ}; 401.810^{\circ}, 498.189^{\circ}]$<br>1st M1 for $\alpha$ , 180 – $\alpha$ ; 2 <sup>nd</sup> M1 adding 360° to at least one of values $\theta = 20.9^{\circ}, 69.1^{\circ}, 200.9^{\circ}, 249.1^{\circ}$ (1 d.p.) awrt | M1; M1           |
| Note               | $1^{\text{st}}$ A1 for any two correct, $2^{\text{nd}}$ A1 for other two Extra solutions in range lose final A1 only SC: Final 4 marks: $\theta = 20.9^{\circ}$ , after M0M0 is B1; record as M0M0A1A0                                                                 | A1,A1 (6)        |
| Alt.(c)            | $\tan \theta + \frac{1}{\tan \theta} = 3$ and form quadratic, $\tan^2 \theta - 3 \tan \theta + 1 = 0$ M1, A1 (M1 for attempt to multiply through by $\tan \theta$ , A1 for correct equation above)                                                                     |                  |
|                    | Solving quadratic $[\tan \theta = \frac{3 \pm \sqrt{5}}{2} = 2.618 \text{ or } = 0.3819]$ M1                                                                                                                                                                           |                  |
|                    | $\theta = 69.1^{\circ}, 249.1^{\circ}$ $\theta = 20.9^{\circ}, 200.9^{\circ}$ (1 d.p.) M1, A1, A1 (M1 is for one use of $180^{\circ} + \alpha^{\circ}$ , A1A1 as for main scheme)                                                                                      | (12 marks)       |

| Question<br>Number | Scheme                                                                                                    | I        | Marks     |
|--------------------|-----------------------------------------------------------------------------------------------------------|----------|-----------|
| <b>8.</b> (a)      | $D = 10, t = 5, \qquad x = 10e^{-\frac{1}{8} \times 5}$                                                   | M1       |           |
|                    | = 5.353 awrt                                                                                              | A1       | (2)       |
| ( <i>b</i> )       | $D = 10 + 10e^{-\frac{5}{8}}, t = 1, \qquad x = 15.3526 \times e^{-\frac{1}{8}}$ $x = 13.549 \qquad (\$)$ | M1<br>A1 | cso (2)   |
| Alt.(b)            | $x = 10e^{-\frac{1}{8}\times6} + 10e^{-\frac{1}{8}\times1}$ M1 $x = 13.549$ (*) A1 cso                    |          |           |
| (c)                | $15.3526e^{-\frac{1}{8}T} = 3$                                                                            | M1       |           |
|                    | $e^{-\frac{1}{8}T} = \frac{3}{15.3526} = 0.1954$                                                          |          |           |
|                    | $-\frac{1}{8}T = \ln 0.1954$                                                                              | M1       |           |
|                    | T = 13.06 or 13.1 or 13                                                                                   | A1       | (3)       |
|                    |                                                                                                           |          | (7 marks) |

Notes: (b) (main scheme) M1 is for  $(10+10e^{-\frac{5}{8}})e^{-\frac{1}{8}}$ , or  $\{10 + \text{their}(a)\}e^{-\frac{1}{8}}$ 

**N.B.** The answer is given. There are many correct answers seen which deserve M0A0 or M1A0

(c) 
$$1^{st}$$
 M is for  $(10+10e^{-\frac{5}{8}}) e^{-\frac{T}{8}} = 3$  o.e.

 $2^{\text{nd}}$  M is for converting  $e^{-\frac{T}{8}} = k$  (k > 0) to  $-\frac{T}{8} = \ln k$ . This is independent of  $1^{\text{st}}$  M.

Trial and improvement: M1 as scheme,

M1 correct process for their equation (two equal to 3 s.f.)

A1 as scheme